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Abstract—Although most biclustering formulations are NP-hard, in time series expression data analysis, it is reasonable to restrict the

problem to the identification of maximal biclusters with contiguous columns, which correspond to coherent expression patterns shared

by a group of genes in consecutive time points. This restriction leads to a tractable problem. We propose an algorithm that finds and

reports all maximal contiguous column coherent biclusters in time linear in the size of the expression matrix. The linear time complexity

of CCC-Biclustering relies on the use of a discretized matrix and efficient string processing techniques based on suffix trees. We also

propose a method for ranking biclusters based on their statistical significance and a methodology for filtering highly overlapping and,

therefore, redundant biclusters. We report results in synthetic and real data showing the effectiveness of the approach and its

relevance in the discovery of regulatory modules. Results obtained using the transcriptomic expression patterns occurring in

Saccharomyces cerevisiae in response to heat stress show not only the ability of the proposed methodology to extract relevant

information compatible with documented biological knowledge but also the utility of using this algorithm in the study of other

environmental stresses and of regulatory modules in general.

Index Terms—Biclustering, time series gene expression data, expression patterns, regulatory modules.
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1 INTRODUCTION

RECENT developments in DNA chips enable the simulta-
neous measurement of the expression level of a large

number of genes (virtually all the genes of an organism) for a
given experimental condition [27]. In this context, several
nonsupervised machine learning methods have been exten-
sively used in the analysis of gene expression data obtained
from these microarray experiments. More recently, biclus-
tering, a technique that aims at finding subgroups of genes
that exhibit highly correlated behaviors in a subgroup of
conditions has emerged as a way to identify potential
regulatory mechanisms. The importance of biclustering in
the identification of groups of genes with coherent expres-
sion patterns and its advantages (when compared to
clustering) in the discovery of local expression patterns have
been extensively studied and documented [6], [21], [28]. We

believe that the use of these techniques is therefore critical to
identify the dynamics of biological systems, as well as the
different groups of genes involved in each biological process.

Many approaches to biclustering in expression data have
been proposed to date [21], [28]. Most specific versions of
this problem have been shown to be NP-hard [31], and
almost all the approaches presented to date are heuristic
and are not guaranteed to find optimal solutions. In a few
cases, exhaustive search methods have been used [37];
limits are imposed on the size of the biclusters that can be
found, in order to obtain reasonable runtimes. Furthermore,
the inherent difficulty of the biclustering problem when
dealing with the original expression matrix and the great
interest in finding coherent behaviors regardless of the
exact numeric values in the matrix have also led many
authors to a formulation based on a discretized matrix [3],
[12], [14], [16], [17], [18], [19], [20], [23], [30], [33], [35], [37],
[41]. Unfortunately, the discretized versions remain, in
general, NP-hard.

There exists, however, an important restriction to the
biclustering problem that has not been extensively explored
and that leads to a tractable problem. This restriction is
applicable when the expression data corresponds to snap-
shots in time of the expression level of the genes. In this
experimental setup, the researcher is particularly interested
in biclusters with contiguous columns, corresponding to
samples taken in consecutive instants of time, which
identify coherent expression patterns shared by a group of
genes in consecutive time points.

Our motivation to restrict the biclustering problem to the
analysis of times series expression data and the identifica-
tion of contiguous columns biclusters is twofold. First, time
series expression experiments are an increasingly popular
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method for studying a wide range of biological phenomena
and can therefore be used to answer a wide range of
biological questions [1]. Second, several authors have
already pointed out the importance of biclusters with
contiguous columns [12], [42] and their relevance in the
identification of regulatory processes. The biological sup-
port for this reasoning is the key observation that biological
processes start and finish in a contiguous but unknown
period of time, leading to increased (or decreased) activity
of sets of genes that can be identified as biclusters with
contiguous columns.

In this context, we propose the CCC-Biclustering algo-
rithm, which finds and reports all maximal contiguous
column coherent biclusters (CCC-Biclusters) in time linear
in the size of the expression matrix by processing a
discretized version of the original expression matrix and
using efficient string processing techniques based on suffix
trees. We also propose a statistical test that can be used to
score the identified CCC-Biclusters and to sort them by
increasing value of the probability that they have appeared
by a random coincidence of events and a method to filter
and remove highly overlapping and, therefore, redundant,
CCC-Biclusters. We show the effectiveness of the proposed
approach in recovering planted CCC-Biclusters in synthetic
data sets and its ability to find regulatory modules in real
data.

This paper is organized as follows: Section 2 surveys
the related work. Section 3 provides the problem formula-
tion. Section 4 describes the algorithm. Section 5 proposes
a scoring schema for CCC-Biclusters based on statistical
significance and similarity measures. Section 6 presents
experimental results performed with synthetic data, which
show experimentally the predicted linear time complexity
of the algorithm and its ability to recover planted CCC-
Biclusters when coupled with the proposed statistical
significance and similarity measures. Section 7 shows a
comparison with a heuristic approach developed for
biclustering time series expression data and an application
of CCC-Biclustering to the discovery of regulatory mod-
ules in yeast by using expression data related with the
yeast response to heat stress. These results show the ability
of the algorithm to discover biologically relevant CCC-
Biclusters, corresponding to coexpressed genes, which are
shown to be coregulated by a set of common transcription
factors (TFs) and highly functionally enriched in one or
more Gene Ontology (GO) terms. Finally, Section 8
presents the conclusions and directions for future work.

2 RELATED WORK

2.1 Biclustering Algorithms for Time Series
Expression Data

Although a large number of biclustering algorithms have
been proposed to address the general problem of bicluster-
ing [21], [28], to date and to our knowledge, only two recent
proposals have addressed the problem of biclustering in
time series expression data [12], [42].

Zhang et al. [42] proposed the CC-TSB algorithm, which
is based on the work by Cheng and Church [6] and uses
directly the values in the expression matrix. Due to its
heuristic nature, this approach is not guaranteed to find the

optimal set of biclusters. We will compare our method
against this work in Section 7.1.

A different approach, from Ji and Tan [12], works with a

discretized expression matrix. As in the present work, they

are also interested in identifying biclusters formed by

consecutive columns. Therefore, if appropriately implemen-

ted, their idea would generate exactly the same biclusters as

the ones generated by our method. The exact complexity of

their algorithm is hard to estimate from the description, but it

is at least �ðjRjjCj2Þ, and hence, the CCC-Biclustering

algorithm we propose is at least a factor of �ðjCjÞ times faster.1

2.2 Discretization Techniques Used in Time Series
Expression Data Analysis

Most discretization techniques commonly applied to gene
expression data use absolute expression values based on the
following concepts: average and standard deviation [14],
[33], [37], percentage of values [2], [32], equal-width
intervals [2], [32], equal frequency [35], linear order between
the conditions [3], [4], [16], [17], [18], [19], and statistically
significant states [30], [41].

Some discretization techniques have, however, been
proposed specifically for time series gene expression data
and are based on the transitions in expression states
between successive time points [8], [11], [12], [15], [29].
These techniques use either two [8], [15], [29] or three
symbols [11], [12] and are usually preceded by a normal-
ization step, which standardizes the gene expression time
series to zero mean and unit standard deviation.

When studying the impact of discretization on bicluster-
ing, we have concluded that the techniques based on
transitions between time points obtain better results than
those using absolute values [22]. This fact confirms our
intuition and that of Costa et al. [7], who claim that the
methods for time series expression analysis that take
explicitly into account the temporal dependencies between
the time points should perform better than those that
neglect them.

3 PROBLEM DEFINITION

3.1 Gene Expression Data and Discretized
Expression Matrix

Let A0 be an jRj row by jCj column gene expression matrix
defined by its set of rows (genes), R, and its set of columns
(conditions), C. In this context, A0ij represents the expression
level of gene i under condition j. Let A0iC and A0Rj denote
row i and column j of matrix A0, respectively.

In this work, we address the case where the gene
expression levels in matrix A0 can be discretized to a set of
symbols of interest, �, which represent distinctive activa-
tion levels. In the simpler case, � may contain only two
symbols, one used for no-regulation and the other for
regulation, fN;Rg, or simply {0, 1}. Another widely used
possibility is to consider a set of three symbols, fD;N;Ug,
meaning DownRegulated, NoChange, and UpRegulated, or
simply {�1, 0, 1}. In other applications, the values in matrix
A0 may be discretized to a larger set of symbols.
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1. Moreover, the implementation made available by the authors has a
complexity that is exponential on the number of columns.



After the discretization process, matrix A0 is transformed
into matrix A. Aij 2 � represents the discretized value of
the expression level of gene i under condition j.

We use the discretization proposed by Ji and Tan [11], [12].
The discretized matrix A is obtained in two steps. In the first
step, A0 is transformed into an A00 ¼ jRj � ðjCj � 1Þmatrix of
variations, as described as follows:

A00ij ¼

A0
iðjþ1Þ�A

0
ij

A0ijj j
; if A0ij 6¼ 0;

�1; if A0ij ¼ 0 and A0iðjþ1Þ < 0;

1; if A0ij ¼ 0 and A0iðjþ1Þ > 0;

0; if A0ij ¼ 0 and A0iðjþ1Þ ¼ 0:

8>>>><
>>>>:

ð1Þ

Once matrix A00 is generated, the final discretized matrix A,
also with jRj rows and jCj � 1 columns, is obtained in a
second step by binning the values of the transformed matrix
considering a threshold t > 0:2

Aij ¼
D; if A00ij � �t;
U; if A00ij � t;
N; otherwise:

8<
: ð2Þ

3.2 Biclusters in Discretized Expression Data

Consider now the matrix A, corresponding to the discre-
tized version of the original expression matrix A0.

Definition 1 (bicluster and trivial bicluster). A bicluster
B ¼ ðI; JÞ is a submatrix AIJ defined by I � R, a subset of
rows, and J � C, a subset of columns. A bicluster with only
one row or one column is called trivial.

The goal of biclustering algorithms is to identify a set of
biclusters Bk ¼ ðIk; JkÞ such that each bicluster satisfies
specific characteristics of homogeneity. These characteris-
tics vary in different applications [21]. In this work, we will
deal with biclusters that exhibit coherent evolutions:

Definition 2 (CC-Bicluster). A CC-Bicluster AIJ is a bicluster
such that Aij ¼ Alj for all rows i, l 2 I and columns j 2 J .

Finding all maximal biclusters satisfying this coherence
property is known to be an NP-hard problem [31].

3.3 CC-Biclusters in Time Series Expression Data

Since we are interested in the analysis of time series
expression data, we can restrict the attention to potentially
overlapping biclusters with arbitrary rows and contiguous
columns [12], [42]. This fact leads to an important complexity
reduction and transforms this particular version of the
biclustering problem into a tractable problem. In this context,
we can define the type of biclusters we are interested in this
work and the important notion of maximality.

Definition 3 (CCC-Bicluster). A CCC-Bicluster AIJ is a
subset of rows I ¼ fi1; . . . ; ikg and a contiguous subset of
columns J ¼ fr; rþ 1; . . . ; s� 1; sg such that Aij ¼ Alj, for

all rows i, l 2 I and columns j 2 J . Each CCC-Bicluster

defines a string S that is common to every row in I for the

columns in J .

Definition 4 (row-maximal CCC-Bicluster) . A

CCC-Bicluster AIJ is row-maximal if we cannot add more

rows to I and maintain the coherence property in Definition 3.

Definition 5 (left-maximal and right-maximal

CCC-Bicluster). A CCC-Bicluster AIJ is left-maximal/
right-maximal if we cannot extend its expression pattern S to

the left/right by adding a symbol (contiguous column) at its

beginning/end without changing its set of rows I.

Definition 6 (maximal CCC-Bicluster). A CCC-Bicluster AIJ

is maximal if no other CCC-Bicluster exists that properly

contains it, that is, if for all other CCC-Biclusters ALM ,

I � L ^ J �M ) I ¼ L ^ J ¼M.

This definition implies Lemma 1, which we present
without proof.

Lemma 1. The maximal CCC-Biclusters are exactly the CCC-

Biclusters that are right-, left-, and row-maximal.

Fig. 1 shows an example of a discretized expression matrix
together with its maximal CCC-Biclusters. For clarity, we
omit the maximal CCC-Biclusters with only one row (gene),
which are uninteresting from a biological point of view.

We can now formulate the problem solved in this work:
identify and report all maximal CCC-Biclusters, given a
discretized expression matrix. In order to do so, we propose
a linear time biclustering algorithm that uses efficient string
processing techniques based on suffix trees.

4 BICLUSTERING TIME SERIES EXPRESSION DATA

USING SUFFIX TREES

4.1 Strings and Suffix Trees

The definitions used in this section are adapted from the
work of Gusfield [10], a well-known reference on the subject.

Definition 7 (string, substring, and suffix). A string S is an

ordered list of symbols over an alphabet � (with j�j symbols)
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2. This discretization technique should be preceded by a normalization
step, which normalizes each gene expression pattern to a given mean and
standard deviation, since the binning process uses variations between
consecutive time-points and the same threshold t for all the genes in matrix
A0. As in the work of Ji and Tan, we standardized A0 to zero mean and unit
standard deviation by gene and set the threshold t to the standard deviation
value ðt ¼ 1Þ.

Fig. 1. Example of a discretized matrix with all maximal CCC-Biclusters
with at least two rows (B1 to B4). The strings N, UDU, U, and UN
correspond to the expression patterns of the maximal CCC-Biclusters
B1, B2, B3, and B4, respectively.



written contiguously from left to right. For any string S (with
jSj symbols), S½i::j� ði � 0; j � jSjÞ is its (contiguous) sub-
string starting at position i and ending at position j. S½i::jSj�
is the suffix of S that starts at position i.

Definition 8 (suffix tree and generalized suffix tree). A
suffix tree T of a string S is a rooted directed tree with exactly
jSj leaves, numbered 1 to jSj, such that 1) each internal node in
T , other than the root, has at least two children, and each edge is
labeled with a nonempty substring of S, 2) no two edges out of a
node have edge labels starting with the same symbol, and 3) for
any leaf i, the label of the path from the root to the leaf i exactly
spells out the suffix of S starting at position i. A generalized
suffix tree is a suffix tree built for a set of strings fSig.

In order to construct a suffix tree obeying this definition,
when one suffix of S matches a prefix of another suffix of S,
we add a symbol (terminator), which does not appear
anywhere else in the string, to its end (usually, the symbol $
is used). In the case of generalized suffix trees, we add a
unique terminator to the end of each string Si.

Suffix trees can be built in time linear in the size of the
string S using several algorithms [26], [34], [40]. General-
ized suffix trees can be easily obtained by consecutively
building the suffix tree for each string Si. This construction
is linear in the sum of the sizes of the set of strings fSig.
Definition 9 (string depth and string label). The string

depth of a node v in T , P ðvÞ, is the sum of all edge lengths in
the path from the root to v. This path is the string label of v.

Definition 10 (suffix link). Let x� denote an arbitrary string,
where x denotes a single symbol, and � denotes a (possibly
empty) substring. For any internal node v with string label
x�, if there is another node u with string label �, then a
pointer from v to u is called a suffix link. As a special case, if �
is empty, then x� has a suffix link leading to the root.

4.2 CCC-Biclusters and Suffix Trees

We now develop our linear time biclustering algorithm.
Before presenting the central idea of this work, which

relates CCC-Biclusters and nodes in a suffix tree, we
introduce a simple alphabet transformation (performed as

a preprocessing step in the algorithm) that appends the
column number to each symbol in the matrix. For that, we
consider a new alphabet �0 ¼ �� f1; . . . ; jCjg, where each
element �0 is obtained by concatenating one symbol in �
and one number in the range f1; . . . ; jCjg. Consider now the
set of strings fS1; . . . ; SjRjg obtained by applying this
alphabet transformation to each row AiC in matrix A.
Fig. 2b shows the result of this transformation applied to the
discretized matrix shown in Fig. 1.

We will now show that the maximal CCC-Biclusters in
the original matrix A correspond exactly to nodes in the
generalized suffix tree T built from the set of strings
fS1; . . . ; SjRjg. We will show later that the increase in the
alphabet size resulting from the alphabet transformation
will not affect the linear time construction and manipula-
tion of the suffix tree.

Consider a node v in T together with its string depth
P ðvÞ. Let LðvÞ denote the number of leaves in the subtree
rooted at v, in case v is an internal node.

Fig. 2a illustrates the generalized suffix tree obtained
from the strings that correspond to the rows of the matrix
shown in Fig. 2b. For clarity, this figure does not contain the
leaves that represent string terminators that are direct
daughters of the root. Each nonterminal node, other than
the root, is labeled with the value of LðvÞ, the number of
leaves in its subtree. We show the suffix links between
nodes although (for clarity) we omit the suffix links
pointing to the root.

By analyzing this illustrative example, it is easy to verify
that every internal node in T corresponds to one row-
maximal, right-maximal CCC-Bicluster in matrix A. This is
so because an internal node v in T corresponds to a given
substring that is common to every row that has a leaf rooted
at v. Therefore, each internal node v defines a CCC-Bicluster
that has P ðvÞ columns and a number of rows equal to LðvÞ. It
is also true that all leaves except those whose edge label is
simply a terminator also identify CCC-Biclusters. However,
some of these CCC-Biclusters are nonmaximal (internal
nodes with string labels D3U4 and N5 and all leaf nodes
whose P ðvÞ is different from the number of columns in A).
We will show that an internal node corresponds to a
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Fig. 2. (a) Generalized suffix tree for the discretized and transformed matrix on the right. The circles identify the maximal CCC-Biclusters with at least

two rows (B1 to B4). (b) CCC-Biclusters B1 to B4 shown in the matrix after alphabet transformation as subsets of rows and columns. Remember that

the strings N, UDU, U, and UN correspond to the expression patterns of the maximal CCC-Biclusters B1, B2, B3, and B4, respectively.



maximal CCC-Bicluster iff there is no incoming suffix link
from a node with the same value of LðvÞ. As such, only the
internal nodes with string labels N1, U2D3U4, U4, and
U4N5 identify maximal CCC-Biclusters with at least
two rows. These nodes correspond to the maximal
CCC-Biclusters B1¼ðfG1; G3g; fC1gÞ, B2 ¼ ðfG1; G2; G4g;
fC2; C3; C4gÞ, B3¼ðfG1; G2; G3; G4g; fC4gÞ, and B4 ¼
ðfG1; G3g; fC4; C5gÞ. Note that the rows in each CCC-
Bicluster identified by a given node v are obtained from the
terminators of the leaves in its subtree. Moreover, the value
of P ðvÞ and the first symbol in the string label of v provide
the information needed to identify the set of contiguous
columns.

Using the illustrative example in Fig. 2, we have shown
that all internal nodes in the generalized suffix tree T

correspond to CCC-Biclusters in matrix A and that some of
these CCC-Biclusters may not be maximal. We will now
present, with sketches of the proofs, the two lemmas that
lead to the theorem that supports our linear time bicluster-
ing algorithm. For the sake of clarity, we will consider only
CCC-Biclusters with at least two rows. CCC-Biclusters with
one row are trivial and uninteresting, and considering them
would unnecessarily complicate the proofs.

Lemma 2. Every right-maximal, row-maximal CCC-Bicluster

with at least two rows corresponds to one internal node in T ,

and every internal node in T corresponds to one right-

maximal, row-maximal CCC-Bicluster with at least two rows.

Proof. Let B be a right-maximal, row-maximal
CCC-Bicluster with at least two rows. Every row in B

shares the substring that defines B. Since B is right-
maximal, at least one of the rows in B must have a
symbol (possibly the terminator symbol) that differs
from the symbol in the other rows in column j, which is
the column after the last column in B. Therefore, there is
an internal node in T that matches B, and the string label
of that node is the string that defines B. For the other
direction, each internal node in T defines one string,
which is present in two or more rows in matrix A, and at
least one of these rows has a symbol different from the
others in column j, which is again the column after the
last column in B. If this was not the case, there would not
exist an internal node in T . tu

To distinguish the nodes that correspond to left-maximal
CCC-Biclusters, we introduce the following definition.

Definition 11 (MaxNode). An internal node v of T is called a

MaxNode iff it satisfies one of the following conditions:

1. It does not have incoming suffix links.
2. It has incoming suffix links only from nodes ui such

that for every node ui, LðuiÞ < LðvÞ.
Consider now two nodes in the suffix tree, v1 and v2.

Notice that if there is a suffix link from node v1 to node v2,
the CCC-Bicluster defined by v2 contains one less column
than the CCC-Bicluster defined by v1. This leads us to the
last lemma.

Lemma 3. An internal node in T corresponds to a left-maximal

CCC-Bicluster iff it satisfies Definition 11.

Proof. The string label s ¼ P ðvÞ of a node v satisfying the
conditions of the lemma defines a CCC-Bicluster B in A
with at least two rows. If node v has no incoming suffix
links, then it corresponds to either a CCC-Bicluster
starting at column 1 in A or is defined by a string s such
that xs is present in a single row in A (xs is the string
label of a leaf node in T ). Therefore, B is left-maximal,
since in both cases, it cannot be extended to the left
without losing rows. If node v has incoming suffix links
from nodes ui such that LðuiÞ < LðvÞ, then B is left-
maximal, since the CCC-Biclusters defined by nodes ui
have less rows than B. For the other direction, if an
internal node v has one incoming suffix link from a node
u such that LðuÞ ¼ LðvÞ (LðuÞ > LðvÞ can never happen),
then the CCC-Bicluster B defined by v can be extended to
the left, keeping the same set of rows. Therefore, v does
not define a left-maximal CCC-Bicluster. tu

We now present our main result.

Theorem 1. Every maximal CCC-Bicluster with at least two
rows corresponds to an internal node in the generalized suffix
tree T that satisfies Definition 11, and each of these internal
nodes defines a maximal CCC-Bicluster with at least two rows.

Proof. Let B be a maximal CCC-Bicluster with at least two
rows. By Lemma 2, this CCC-Bicluster corresponds to an
internal node v in T . Since B is left-maximal (Lemma 1),
node v must satisfy Definition 11 (Lemma 2). For the
other direction, let v be an internal node in T satisfying
Definition 11. By Lemma 2, node v corresponds to a
right-maximal, row-maximal bicluster. If v also satisfies
Definition 11, then B is also left-maximal, and therefore,
B is maximal. tu

4.3 CCC-Biclustering: A Linear Time Biclustering
Algorithm for Finding and Reporting All
Maximal CCC-Biclusters

Theorem 1 directly implies that there is an algorithm that
finds and reports all maximal CCC-Biclusters in a dis-
cretized and transformed gene expression matrix A in time
linear in the size of the matrix. Algorithm 1 builds a suffix
tree for the set of strings fS1; . . . ; SjRjg, obtained using the
alphabet transformation described in Section 4.2, and
checks, for each internal node, whether the conditions of
Theorem 1 are met. Nodes that do not meet the required
conditions are marked as invalid in line 10. All the
remaining internal nodes correspond to maximal CCC-
Biclusters and are reported.

Algorithm 1. CCC-Biclustering

input: Discretized gene expression matrix A

1 Perform alphabet transformation and obtain

fS1; . . . ; SjRjg.
2 Build a generalized suffix tree T for fS1; . . . ; SjRjg.
3 for each internal node v 2 T do

4 Mark v as “Valid.”
5 Compute the string depth P ðvÞ.
6 for each internal node v 2 T do

7 Compute the number of leaves LðvÞ in the subtree

rooted at v.

8 for each internal node v 2 T do
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9 if there is a suffix link from v to a node u and LðuÞ ¼ LðvÞ
then

10 Mark node u as “Invalid.”

11 for each internal node v 2 T do

12 if v is marked as “Valid” then

13 Report the CCC-Bicluster that corresponds to v.

4.4 Complexity Analysis of CCC-Biclustering and
Implementation Issues

With appropriate data structures at the nodes and using
Ukkonen’s algorithm [40], the suffix tree construction time
is linear on the size of the input matrix, OðjRjjCjÞ. The
remaining steps of the CCC-Biclustering algorithm are also
linear since they are performed using depth-first searches
(dfs) on the suffix tree. Since any tree has fewer internal
nodes than leaves, the linear time complexity of Algorithm 1
is an immediate result.

One issue, however, deserves a special reference. It is a
well-known fact that the complexity of suffix tree construc-
tion has a dependence on the alphabet size that becomes
important when the alphabet is large [10]. Therefore, one
has to ensure that the increase in the alphabet size from j�j
to jCjj�j due to the alphabet transformation described in
Section 4.2 does not affect the linear time complexity of our
algorithm. In fact, only one internal node, the root, has a
number of children that depends on the number of
columns. As can be observed in the suffix tree for the
example in Fig. 2, all internal nodes other than the root have
a number of children that is not affected by the number of
columns. This is so because after the alphabet transforma-
tion, the string label of an internal node corresponds to an
expression pattern common to a set of genes between a
contiguous set of time points, which always starts at a
specific time point. This leads to a maximum number of
children that is Oðj�jÞ and not OðjCjj�jÞ.

Internal nodes that have as children only leaf nodes with
edges labeled by terminator symbols may have a number of
children that grows with the number of rows in the matrix,
but this number does not depend on the number of
columns. The dependence on the number of rows is not a
problem since standard implementations of generalized
suffix trees avoid nonlinear dependencies on the number of
terminators by using the appropriate data structures. In this
context and since the alphabet transformation only influ-
ences the outdegree of the root, we guarantee that the
branching at the root is performed in constant time, and the
total complexity of CCC-Biclustering is OðjRjjCjÞ.

5 SCORING CCC-BICLUSTERS USING STATISTICAL

SIGNIFICANCE AND SIMILARITY MEASURES

Since applying biclustering to real gene expression matrices
can produce hundreds or even thousands of biclusters, an
objective evaluation of the quality of the biclusters
discovered is crucial. In fact, the inspection of biclustering
results can be prohibitive without an efficient scoring
approach that enables sorting and filtering the results
according to a statistical scoring criterion. The statistical
significance of the results can then be combined with
measures of biological significance in order to produce a set

of interesting and potentially useful biclusters, from both
the statistical and biological point of view.

For CCC-Biclusters, we propose the use of a scoring
criterion, which combines two criteria: 1) statistical sig-
nificance of expression pattern and 2) similarity with
another overlapping CCC-Bicluster. CCC-Biclusters are
sorted by increasing order of the computed p-value, and if
several of them are very similar, only the most significant
ones are kept.

5.1 Statistical Significance

We propose to measure the statistical significance of a
CCC-Bicluster B of size jIj � jJ j, where I is the set of genes
and J is the set of contiguous time points, and expression
pattern pB against the null hypothesis H0 that assumes that
the expression values of genes evolve independently.

Under the null hypothesis, it is possible to compute,
using reasonable simplifying assumptions, the probability
of a CCC-Bicluster of the considered size and expression
pattern occurring by chance in an expression matrix with
jRj genes and jCj time points. The value of this probability
is obtained by computing the tail of the binomial
distribution P , which gives the probability of an event with
probability p occurring k or more times in n independent
trials: P ¼

Pn
j¼k p

jð1� pÞn�j.
The statistical significance of a CCC-Bicluster B is the

p-value(B), which is computed by obtaining the probability
of a random occurrence under H0 of the expression pattern
pB; k ¼ jIj � 1 times in n ¼ jRj � 1 independent trials,
where I is the number of genes in B, and jRj is the total
number of genes in the gene expression matrix.

We use the simplifying assumption that the probability of
occurrence of a specific expression pattern pB, P ðpBÞ, is
adequately modeled by a first-order Markov Chain, with
state transition probabilities obtained from the values in the
corresponding columns in the matrix. For example,
if B ¼ ðfG1; G2; G4g; fC2; C3; C4gÞ, corresponding to CCC-
Bicluster B2 in Fig. 2b, with expression pattern pB ¼ U2D3U4,
then

P ðpBÞ ¼ P ðU2D3U4Þ ¼ P ðU2ÞP ðD3jU2ÞP ðU4jD3Þ;

where

P ðU2Þ ¼ jU2j
jRj ;

P ðD3jU2Þ ¼ P ðU2D3Þ
P ðU2Þ ¼

jU2D3j
jU2j ;

and

P ðU4jD3Þ ¼ P ðD3U4Þ
P ðD3Þ ¼

jD3U4j
jD3j :

These probabilities are, in this case, computed using the
gene expression matrix after alphabet transformation in
Fig. 2b. The values jU2j, jU2D3j, jD3j, and jD3U4j
correspond, respectively, to the number of occurrences of
symbol U2, the number of transitions from U2 to D3, the
number of occurrences of symbol D3, and the number of
transitions from D3 to U4.

To speed up the computation, the value of P ðpBÞ for each
pattern pB can be computed and stored in the internal nodes
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while traversing the suffix tree and at the same time that the
maximal CCC-Biclusters are identified. Note that we do not
need to compute values of P ðpBÞ for the leaf nodes, since

these CCC-Biclusters with only one row are not reported.

5.2 Similarity Measure

In order to compute the similarity measure between two

CCC-Biclusters B1 ¼ ðI1; J1Þ and B2 ¼ ðI2; J2Þ, we use the
Jaccard Index. In this work, this score is used to measure the

overlap between two CCC-Biclusters in terms of both genes
and conditions and is defined as follows:

JðB1; B2Þ ¼
jB1

T
B2j

jB1

S
B2j
¼ jB11j
jB01j þ jB10j þ jB11j

; ð3Þ

where

B11 ¼ ði; jÞ : ði; jÞ 2 B1

^
ði; jÞ 2 B2

n o
;

B10 ¼ ði; jÞ : ði; jÞ 2 B1

^
ði; jÞ 62 B2

n o
;

and

B01 ¼ ði; jÞ : ði; jÞ 62 B1

^
ði; jÞ 2 B2

n o
;

for the genes i 2 I1

S
I2 and the conditions j 2 J1

S
J2.

Similarly, the gene similarity and condition similarity
can be computed, respectively, as follows:

JðI1; I2Þ ¼
jI1

T
I2j

jI1

S
I2j
;

and

JðJ1; J2Þ ¼
jJ1

T
J2j

jJ1

S
J2j

:

Note that in practice and since jB1j ¼ jI1j � jJ1j and

jB2j ¼ jI2j � jJ2j, the similarity measure as defined in (3) can
be computed easily using the fact that

jB1

\
B2j ¼ jI1

\
I2j � jJ1

\
J2j

and

jB1

[
B2j ¼ jB1j þ jB2j � jB1

\
B2j:

To speed up the process, only the CCC-Biclusters that

have been identified as statistically significant are processed
during this last phase of the filtering process.

6 EXPERIMENTAL RESULTS WITH SYNTHETIC DATA

In order to validate experimentally the proposed approach

in terms of the predicted linear time complexity and the
ability to recover relevant CCC-Biclusters, we performed
experiments on synthetic data, using a prototype imple-

mentation of the algorithm coded in Java.
We have first validated the predicted linear time

complexity by generating synthetic matrices with random
values, in which 10 CCC-Biclusters, with dimensions
ranging from 15 to 25 rows and 8 to 12 columns, were
hidden. The size of the matrices varied from 250 � 50
(rows � columns) to 1,000 � 250. We used a three-symbol

alphabet, � ¼ fU;D;Ng. These experiments have also
shown a clear linear relationship between the variation of
the CPU time and the size of the input data matrix over
several orders of magnitude [23]. In all cases, we recovered
the planted CCC-Biclusters, together with a number of
CCC-Biclusters overlapping with the planted biclusters
and a large number of artifacts that resulted from random
coincidences in the data matrix.

For illustrative purposes, we describe here the results
obtained in the 1,000 rows by 50 columns example. For this
example, two experiments were carried out. In the first
experiment, no planted CCC-Biclusters existed. In this case,
a total of 42,030 maximal nontrivial CCC-Biclusters were
identified. None of these CCC-Biclusters passed the statis-
tical significance test described in Section 5.1 at a 1 percent
level (after Bonferroni correction). In the second experi-
ment, 10 CCC-Biclusters with the aforementioned dimen-
sions were planted. See Table 1 for details.

CCC-Biclustering identified 40,461 maximal nontrivial
CCC-Biclusters in a few seconds. From these, 165 passed the
statistical significance test at the 1 percent level (after
Bonferroni correction). Most of these are variations of the
planted CCC-Biclusters that still pass the statistical sig-
nificance test because they include a large part of the planted
pattern. Table 2 shows that after sorting the CCC-Biclusters
using the statistical significance p-value described in
Section 5.1 and filtering CCC-Biclusters whose similarity
measure, as defined in Section 5.2, is above 25 percent, the
proposed approach is able to identify the planted
CCC-Biclusters as the top 10 CCC-Biclusters.3 After filtering
the CCC-Biclusters with similarities above 25 percent, only
37 CCC-Biclusters had a (Bonferroni-corrected) p-value
below 0.01.4

These results confirm that CCC-Biclustering, when
coupled with the proposed scoring schema based on
statistical significance and similarity measures, can
be effectively used to identify even relatively small
CCC-Biclusters that are statistically significant.
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TABLE 1
CCC-Biclusters Planted in the Synthetic 1,000 � 50 Matrix

3. CCC-Biclusters with IDs 2,438, 15,158, and 14,145 have lost some
genes, relative to the original planted CCC-Biclusters. This was caused by
the (artificial) way in which CCC-Biclusters were planted. When two or
more CCC-Biclusters are overlapping, the expression patterns in the
overlapping submatrices are those of the last planted CCC-Bicluster. For
this reason, the genes in overlapping zones are lost for the previously
planted CCC-Biclusters.

4. When coupled only with the statistical significance test, CCC-
Biclustering is already able to identify the planted CCC-Biclusters.
However, there is a number of highly overlapping CCC-Biclusters, which
prevent the discovery of the 10 CCC-Biclusters in the top 10 and can thus be
filtered efficiently using the similarity measure described in Section 5.2.



7 EXPERIMENTAL RESULTS WITH REAL DATA SETS

7.1 Comparison with Heuristic Algorithms

The CC-TSB algorithm [42] described in Section 2 aims at
finding groups of genes that exhibit coherent evolution on a
subset of contiguous columns. Since this heuristic bicluster-
ing algorithm uses the gene expression values directly
without relying on a discretization step, we decided to
compare its results with those of CCC-Biclustering in the
same data set and using the same parameters used by the
authors.

In this context, we used the yeast cell-cycle data set
publicly available [5], described by Tavazoie et al. [38] and
processed by Cheng and Church [6]. We used 2,884 genes
selected by Cheng and Church [6] and removed the ORFS
with missing values and the ones that no longer exist in the
Saccharomyces Genome Database (SGD). As in [42], we set
the parameters � and � to 300 and 1.2, respectively, and used
their algorithm in the matrix with the remaining genes to
find 100 biclusters. In order to apply CCC-Biclustering, we
first discretized this preprocessed matrix using the
technique based on transitions between time points pro-
posed by Ji and Tan [11], [12] and described in Section 3.1.5

In Table 3, we report the sizes and the mean squared
residue ðMSRÞ for the top five biclusters (evaluated by
the MSR, which is the merit function minimized in the

CC-TSB algorithm) obtained by each method. In the case
of CCC-Biclustering, when sorting by MSR was used and
in order to avoid the discovery of CCC-Biclusters with a
small number of genes corresponding to small matrices
with a small MSR, we filtered those with less than
20 genes. We report also the top five CCC-Biclusters
discovered by sorting the results using the p-value
described in Section 5.1 and filtering CCC-Biclusters with
similarities above 25 percent. These results show that the
statistical significance test used for CCC-Biclusters is able
to find highly significant expression patterns shared by a
relatively large number of genes with a small MSR.

The results obtained using the CC-TSB algorithm show
that the heuristic proposed by Zhang et al. is not effective.
In fact, the restriction imposed on the columns that can be
removed makes the algorithm converge rapidly to a local
minimum, from which it does not escape. The obtained
values of MSR show clearly the weakness of the method.
Moreover, the method converges to biclusters with a high
number of columns, which are, in most cases, all the
columns in the data set. This means that this algorithm is in
fact looking for gene clusters and not biclusters, which
makes it useless for the purposes of identifying local
patterns.

7.2 Application to the Identification of Regulatory
Modules

To assess the biological relevance of CCC-Biclusters in real
data, we used a data set from Gasch et al. [9], concerning the
yeast response to heat shock. This data set comprises five
different time-points along the first hour of exposure to
37 �C (00, 50, 150, 300, and 600). The first time-point is an
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5. Before the discretization, we normalize the data to zero mean and unit
standard deviation, as described in Section 3.1. However and in order to
compare our results with those of the CC-TSB algorithm (which computes
the MSR values using the original values in A0), we computed the MSR
values for the CCC-Biclusters presented in Table 3 using the original (not
normalized) expression values in A0. We also set the threshold t to the
standard deviation value ðt ¼ 1Þ.

TABLE 3
Comparison of the Results Obtained by the CCC-Biclustering and CC-TSB Algorithm [42]

TABLE 2
Top 10 CCC-Biclusters Discovered after Filtering CCC-Biclusters with Overlapping above 25 Percent

(after Sorting the Discovered CCC-Biclusters Using the Statistical Significance p-Value)



average of three replicates of time zero. The data set was
preprocessed as in Section 7.1.

Since we were interested in CCC-Biclusters with high
statistical significance, the set of 167 maximal CCC-Biclusters
discovered (using 1.7 seconds of a 2.2-GHz Intel Core 2 Duo)
was then sorted in ascending order according to the
statistical p-value described in Section 5.1. From these, only
25 were considered as highly significant at the 1 percent level
after applying the Bonferroni correction for multiple testing.
In order to avoid the analysis of highly overlapping
CCC-Biclusters, we then computed the similarities between
the sorted CCC-Biclusters using the Jaccard similarity score,
as described in Section 5.2, and filtered CCC-Biclusters with
a similarity greater than 25 percent. This filtering process
removed 9 of the 25 CCC-Biclusters originally selected.

Table 4 shows a summary of the remaining
16 CCC-Biclusters analyzed using the GO annotations
obtained using the GoToolBox [25]. To perform the analysis
for functional enrichment, we used the p-values obtained
using the hypergeometric distribution to access the over-
representation of a specific GO term. In order to consider a
CCC-Bicluster to be highly significant, we require its genes to
show a highly significant enrichment in one or more of the
“biological process” ontology terms by having a Bonferroni-
corrected p-value below 0.01. A CCC-Bicluster is considered
as significant if at least one of the GO terms analyzed is
significantly enriched by having a (Bonferroni-corrected)
p-value in the interval [0.01, 0.05].6

From these 16 CCC-Biclusters, six (Tables 5 and 6) were
analyzed in more detail, corresponding to chronological
expression patterns selected as described below (Figs. 3
and 4). For these CCC-Biclusters selected for describing
either transcriptional up-regulation or down-regulation
patterns, we analyzed in detail the GO annotations

together with information about transcriptional regulation
available in the YEASTRACT database [39].7

7.2.1 CCC-Biclusters Describing Transcriptional

Up-Regulation Patterns

The first three CCC-Biclusters analyzed include genes
whose expression was up-regulated 1) abruptly during
the first 5 minutes of exposure (CCC-Bicluster 39, with
258 genes), 2) slowly during the first 15 minutes of
exposure (CCC-Bicluster 27, with 291 genes), and 3) with
a short delay, between 5 and 15 minutes of exposure
(CCC-Bicluster 14, with 1091 genes) (see Fig. 3 for details).

The analysis of the first bicluster (CCC-Bicluster 39)
using the GOToolBox revealed that there are no GO terms
with a (Bonferroni-corrected) p-value below or equal to 0.01
associated to this specific gene list (Table 5). This may occur
as a consequence of an unspecific wide initial response to
stress, in which the transcription of a number of genes,
belonging to a large number of different biological func-
tions, is up-regulated. It is nonetheless noteworthy that the
most significant terms associated to this bicluster are “signal
transduction” (p-value of 1.65E-04) and “regulation of
transcription from RNA polymerase II promoter” (p-value
of 2.80E-02). This conclusion is consistent with the activa-
tion during the first 5 minutes following yeast exposure to
heat shock of signaling cascades, and TFs associated with
the transcriptional machinery, which will mediate stress-
specific responses in the subsequent time-points.

A similar GO-based analysis of the second and third
biclusters (CCC-Biclusters 27 and 14), also presented in
Table 5, reveals the occurrence of highly significant terms,
including “carbohydrate metabolism” (p-values of 7.33E-08
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TABLE 4
Summary of the CCC-Biclusters Passing the Statistical Test at the 1 Percent Level after Bonferroni Correction

(after Filtering CCC-Biclusters with Similarity above 25 Percent)

6. Note that although we only consider as functionally enriched the
terms with Bonferroni-corrected p-values below 0.01 (for high statistical
significance) or below 0.05 (for statistical significance), the p-values
presented in the text are without correction.

7. In Tables 5 and 6, presented in the next sections, column 1 identifies
the CCC-Bicluster, column 2 lists relevant TFs coregulating the set of genes
in the CCC-Biclusters, column 3 lists the percentage of genes in the
CCC-Biclusters that are coregulated by the TF in column 2. Finally,
columns 4 and 5 list relevant GO terms in the transcriptomic response of
Saccharomyces cerevisiae to heat stress, together with the hypergeometric
geometric p-values. The p-values not passing the Bonferroni test at the
1 percent level are marked with *.



and 4.87E-21) or “energy derivation by oxidation of organic
compounds” (p-values of 3.60E-06 and 3.92E-20), related to
energy generation, and “response to stimulus” (p-values of
3.28E-08 and 1.51E-16) or “response to stress” (p-values of
4.88E-06 and 1.02E-15), related to the cellular response to
heat shock. These terms are consistent with the induction of
protein folding chaperones aiming at protecting against and
recovering from protein unfolding with associated energetic
expenses. The transcriptional induction of genes involved in
alternative carbon source metabolism and respiration, in the
presence of glucose, is considered a consequence of a

sudden decrease in cellular ATP concentration, caused by
ATP-consuming stress defense mechanisms [9].

Using the computational tools from the YEASTRACT
database [39], each of the three referred CCC-Biclusters was
grouped based on the sharing of specific transcriptional
regulators mediating the coregulation of clustered genes. As
expected, based on the literature, the heat shock factor Hsf1p
comes out as one of the major regulators of these three
biclusters, regulating 16 percent, 23 percent, and 19 percent
of the genes in CCC-Biclusters 39, 27, and 14, respectively.
Moreover, in agreement with previous knowledge, Msn2p
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TABLE 5
CCC-Biclusters Describing Transcriptional Up-Regulated Patterns

TABLE 6
CCC-Biclusters Describing Transcriptional Down-Regulated Patterns



and Msn4p, regulators of the general stress response in
yeast, appear as major contributors to the heat-induced
transcriptional activation. Msn2p regulates 14 percent,
21 percent, and 19 percent of the genes in each of the
biclusters, respectively [13]. A third TF also presumably
implicated in the regulation of the three biclusters is Rpn4p,
regulating 14 percent, 18 percent, and 18 percent of the genes
in each of the biclusters, respectively. This TF stimulates the
expression of the proteasome genes, involved in the
degradation of denatured or unnecessary proteins in
stressed yeast cells [9].

Although the TFs regulating the three temporal stages of
heat-shock-induced coactivated transcription are appar-
ently the same, the majority of the genes in each of the
three CCC-Biclusters do not overlap. As an example, the
Hsf1p-target heat shock genes seem to be activated at
different time-points: as a more drastic response HSP10 and
HSP42 are up-regulated within the first 5 minutes of heat
shock, while HSP104, HSP26, HSP78, SSA4, and SSE2
transcript levels are only maximal after 15 minutes of heat
shock, and the expression of HSC82, HSP82, SSA1, SSA2,
SSA3, SSC1, SSE1, CPR6, and STI1 only increases between
5 and 15 minutes of heat shock exposure. This may suggest
that these sets of chaperones play their roles at different
times of the adaptive process. It also suggests that each TF
may act on different target genes in different temporal
states.

7.2.2 CCC-Biclusters Describing Transcriptional

Down-Regulation Patterns

The remaining three CCC-Biclusters analyzed include genes
whose expression was down-regulated abruptly during the
first 5 minutes of exposure (CCC-Bicluster 147, comprising
144 genes, and CCC-Bicluster 151, comprising 232 genes)

and with a short delay, between 5 and 15 minutes of
exposure (CCC-Bicluster 124, comprising 904 genes). See
Fig. 4 for details.

The GO-based analysis of CCC-Bicluster 147 indicates
that there are no GO terms with a (Bonferroni-corrected)
p-value below 0.01 associated to this specific gene list (see
Table 6). However, it is interesting to observe that the most
significant terms associated with CCC-Bicluster 147 include
“protein amino acid glycosylation,” (p-value of 1.03E-03),
“glycoprotein biosynthesis,” (p-value of1.48E-03), and “ster-
oid biosynthesis” (p-value of 3.78E-03). Indeed, steroid/
sterol biosynthesis and glycoprotein biosynthesis are linked
to the plasma membrane and cell wall reconfiguration,
which are important aspects of the heat shock response [36]
and appear in this profile to be among the first steps of
yeast adaptation to heat shock.

Also shown in Table 6 is the fact that the genes in
CCC-Bicluster 151 are associated by the GOToolBox, with
high significance, to GO terms such “cell organization and
biogenesis,” (p-value of 6.95E-08), “cell cycle” (p-value of
1.30E-07), and “mitotic cell cycle” (p-value of 3.32E-06),
suggesting cell cycle repression, which is in agreement
with growth arrest upon sudden exposure to 37 �C. This is
consistent with the fact that 16.5 percent and 12.4 percent
of the down-regulated genes in this CCC-Bicluster are
documented targets of the TFs Swi4p and Mbp1p,
respectively, both forming complexes with Swi6p to
control cell cycle G1-S transition. Finally, CCC-Bicluster
124 comprises a number of genes involved in RNA and
protein synthesis (see Table 6 for details). GO terms such
as “RNA processing” (p-value of 6.65E-38) or “ribosome
biogenesis” (p-value of 8.23E-63) appear among the most
significant GO terms associated to this CCC-Bicluster.
Indeed, the inhibition of ribosome biosynthesis and the
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Fig. 4. Expression patterns of the CCC-Biclusters describing transcriptional down-regulation. (a) CCC-Bicluster 147. (b) CCC-Bicluster 151.
(c) CCC-Bicluster 124.

Fig. 3. Expression patterns of the CCC-Biclusters describing transcriptional up-regulation. (a) CCC-Bicluster 39. (b) CCC-Bicluster 27.
(c) CCC-Bicluster 14.



repression of rRNA synthesis, associated with the general
stress response program, are also features of the heat
shock response [9]. In agreement with this observation, the
TFs Sfp1p and Rap1, associated with ribosome biogenesis
and rRNA synthesis, appear as the main regulators of this
CCC-Bicluster.

This brief overview of the biological significance of the
CCC-Biclusters, generated with real data, shows that this
method is able to point out the major aspects of a given
transcriptional response. In this particular case, the pre-
viously identified transcriptional regulons and biological
processes underlying the yeast heat shock response emerged
from this biclustering analysis. This analysis further empha-
sizes the importance of obtaining time-course expression
profiles to fully understand the several steps that constitute a
given stress response and of using suitable computational
methods such as the one described herein. In this analysis,
we were able to differentiate a number of different
expression profiles, contributing to scrutinize step by step
the yeast cell response to heat shock. Being a thoroughly
studied theme, the conclusions from this analysis were not
surprising but support the idea that CCC-Biclustering is a
powerful tool for the analysis of time-course global expres-
sion data.

8 CONCLUSIONS AND FUTURE WORK

This work opened several promising directions for future
research. The most immediate direction for development
is related with the discovery of imperfect CCC-Biclusters,
that is, CCC-Biclusters allowing up to a given number of
errors per gene relative to the string that defines the
CCC-Bicluster [24].

Extending the algorithm to handle time-lagged CCC-
Biclusters is also a possibility that will be analyzed if the
question of time-lagging activation is deemed relevant to
the identification of regulatory networks.

The most promising direction for medium- and long-
term research is, however, related with the development of
methods for the identification of regulatory networks that
use the information about coregulated genes obtained using
biclustering algorithms. This will require the integration of
information from different sources, which include gene
expression, sequence data, and information from the
scientific literature. We believe that this problem is one of
the most important and challenging problems that will be
addressed in this area in the coming decade.
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