Protein-protein interactions and functional genomics

Pablo Minguez (pablo.minguez@embl.de) Structural and Computational Biology Unit EMBL Heidelberg http://www.bork.embl.de/~paniagua/

Outline

- Protein-protein interactions
 - ppis are important
 - Resources
 - Detection methods
- Interactome (networks)
 - Description
 - Graph theory
- Types of biological networks
- Functional profiling using ppi data
 - Scenario
 - In-house interactomes
 - Tools @ Babelomics
 - Snow
 - NetworkMiner

Outline

Protein-protein interactions

- ppis are important
 - Detection methods
 - Resources
- Interactome (networks)
 - Description
 - Graph theory
- Types of biological networks
- Functional profiling using ppi data
 - Scenario
 - In-house interactomes
 - Tools @ Babelomics
 - Snow
 - NetworkMiner

Ppis are a central point at almost every level of cell function

A ppi is a physical interactions between two proteins.

- Transient (weak) eg. signalling cascades
- Stable (strong) eg. protein complexes
- Structure of subcellular organelles (structural proteins)
- Transport machinery across the various biological membranes

(nuclear pore importins)

- Packing the chromatine (histones)
- Signal transduction (important in many diseases, eg. cancer)
- Regulation of gene expression (transcription factors)
- Protein modifications (kinases)

BRCA2 is your favourite protein, where do you find information about its interactions?

From:

- IntAct http://www.ebi.ac.uk/intact
- HPRD http://www.hprd.org
- MINT http://mint.bio.uniroma2.it
- BIND http://bond.unleashedinformatics.com
- DIP http://dip.doe-mbi.ucla.edu
- BioGrid http://thebiogrid.org

BRCA2 is your favourite protein, where do you find information about its interactions?

From:

- IntAct http://www.ebi.ac.uk/intact
- HPRD http://www.hprd.org
- MINT http://mint.bio.uniroma2.it
- BIND http://bond.unleashedinformatics.com
- DIP http://dip.doe-mbi.ucla.edu
- BioGrid http://thebiogrid.org

PY UN 2 Fanconi anemia Q group D1 Dasty protein 93 interactions IN 3 NE IN Q FYN MTA2 4 NE IN FANCD2 Q DMC1 CHEBI:15422 EBI-539895 5 NE IN BRCA2 GRB2 AT4g00020 RAD51 Q RAD51 FANCD2 At5g01630 LIM15 6 brca2b ABL1 NE IN SHFM1 RPA2 Q9XIR8 Q Brca2 7 Fanconi Q9FL96

> 93 binary interactions were found in IntAct.

> Your query also matches 854 interaction evic

> Your query also matches 23 interaction evide

BRCA2 is your favourite protein, where do you find information about its interactions?

From:

- IntAct http://www.ebi.ac.uk/intact
- HPRD http://www.hprd.org
- MINT http://mint.bio.uniroma2.it
- BIND http://bond.unleashedinformatics.com
- DIP http://dip.doe-mbi.ucla.edu
- BioGrid http://thebiogrid.org

PROTEIN INTERACTORS
BRCA1
CDC2
Cyclin A2
Cyclin dependent kinase 2
Cyclin E1
Fanconi anemia protein E
Fanconi anemia, complementation group D2
Filamin A
<u>p53</u>
RAD51
Replication factor A protein 1
DSS1
STAT5A
Polo like kinase
Mitotic checkpoint kinase MAD3L
SMAD3
High mobility group protein 20B
PCAF

BRCA2 is your favourite protein, where do you find information about its interactions?

From:

- IntAct http://www.ebi.ac.uk/intact
- HPRD http://www.hprd.org
- MINT http://mint.bio.uniroma2.it
- BIND http://bond.unleashedinformatics.com
- DIP http://dip.doe-mbi.ucla.edu
- BioGrid http://thebiogrid.org

BRCA2: Breast cancer type 2 susceptibility protein (P51587) partner(s) found in MINT. Your query also matches 920 interaction(s) from other databases.									
protein	evidences	score	direct.	ass.	coloc.	enz.	complex.	HT.	
x 👹 DMC1 Homo sapiens (Q14565)	11	0.93	9	2			1		
x 👹 PALB2 Homo sapiens (Q86YC2)	4	0.82	3	1					
x 🎆 RAD51 Homo sapiens (Q06609)	7	0.71	4	3			1		
ABL1 Homo sapiens (P00519)	1	0.28	1				ĺ	1	
FYN Homo sapiens (P06241)	1	0.28	1				ĺ	1	
🗴 👹 RAD23A Homo sapiens (P54725)	1	0.28		1			ĺ	1	

BRCA2 is your favourite protein, where do you find information about its interactions?

From:	Mol A Short Label	Mol B Short Label
IntAct - http://www.ebi.ac.uk/intact	FANCG	BRCA2
HPRD - http://www.hprd.org	BRCA2	hsFLNa
MINT - http://mint bio uniroma2 it	FANCD2	BRCA2
	BRCA2	RAD51
* BIND - http://bond.unleashedinforma	attos.com	BRCA2
DIP - http://dip.doe-mbi.ucla.edu	SMAD3	BRCA2
BioGrid - http://thebiogrid.org	BRCA2	DSS1
	CDK2/CCNA2	BRCA2
	BRCA2	RAD51
1	BRCA2	RAD51
	BRCA2	SHFDG1
	SHFDG1	BRCA2
59 interactions	Brh2	Rad51
	RAD51	RAD51
	BRCA2	RAD51
	RAB163	RAD51
	Pol II	BRCA2 promoter

BRCA2 is your favourite protein, where do you find information about its interactions?

From:

- IntAct http://www.ebi.ac.uk/intact
- HPRD http://www.hprd.org
- MINT http://mint.bio.uniroma2.it
- BIND http://bond.unleashedinformatics.com
- DIP http://dip.doe-mbi.ucla.edu
- BioGrid http://thebiogrid.org

Protein: BRCA2 protein

Binary Complex

	DIP	Cross Reference			
Interaction	Interactor(s)	Links	PIR	SWISSPROT	
DIP:57452E	DIP:29383N	٢			
DIP:40108E	<u>DIP:462N</u>	۲	<u>158295</u>	<u>Q06609</u>	
DIP:40109E	DIP:368N	۲	DNHU53	<u>P04637</u>	
DIP:76301E	DIP:5971N	۲	<u>A58881</u>	<u>P38398</u>	
DIP:103802E	DIP:38427N	۲		Q86YC2	

BRCA2 is your favourite protein, where do you find information about its interactions?

From:

- IntAct http://www.ebi.ac.uk/intact
- HPRD http://www.hprd.org
- MINT http://mint.bio.uniroma2.it
- BIND http://bond.unleashedinformatics.com
- DIP http://dip.doe-mbi.ucla.edu
- BioGrid http://thebiogrid.org

Switch View: Summary Sortable Table

Displaying 37 total unique interactors

RAD51 | HRAD51, RECA, BRCC5, HsT16930, HsRad51, RAD51A RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)

HMG20B | SMARCE1r, HMGXB2, FLJ26127, SOXL, PP7706, HMGX2, BRAF25, BRAF35, pp8857 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E, member 1-related

BRCA1 | RNF53, IRIS, BRCC1, PSCP, PNCA4, BRCAI, BROVCA1

breast and ovarian cancer susceptibility protein 1

State of art of ppi databases

Overlap of ppis

	HPRD (36,617)	BIND (6,621)	DIP (1,067)	MINT (11,367)	Reactome (5,960)	IntAct (10,244)	MIPS (346)	PDZ Base (101)
PDZ Base (101)	93	19	0	60	0	5	3	
MIPS (346)	307	294	28	65	14	43		_
IntAct (10,244)	8,031	1167	283	7,362	173			
Reactome (5,960)	538	207	67	102		8		
MINT (11,367)	8,690	1463	379					
DIP (1,067)	801	264						
BIND (6,621)	4,903							
HPRD (36,617)]							

в

Α

		Over	lan a	fnrat	ninc			
HPRD (9,427)		Over	iap u	ιριοι	ems			
BIND (3,887)	3,414	2	20					
DIP (804)	755	537						
MINT (4,975)	4,719	2218	562					
Reactome (970)	733	453	164	497				
IntAct (4,614)	4,421	1969	473	3795	497			
MIPS (405)	396	390	146	303	78	262		
PDZ Base (115)	114	64	10	99	1	54	16	1
	HPRD	BIND	DIP	MINT	Reactome	IntAct	MIPS	PDZ Base
	(9,427)	(3,887)	(804)	(4,975)	(970)	(4,614)	(405)	(115)

No one has a complete coverage of the known ppis (neither of the complete interactome)

BRCA2 is your favourite protein, where do you find information about its interactions? **Choose your favourite!!**

	PRO	TEIN INTERAC	TORS						
Switch View: Summary Sortable Table	BRC	:A1	:	> 93 > You	binary interac ir query also	ctions were matches 85	found in IntAc	t. evic	
Displaying 37 total unique interactor	ors CDC	CDC2				ir query also	matches 23	interaction e	VIDE
	Cycl	in A2			Previous 1-30 of 93 😝 Next 30 Expo				
RAD51 HRAD51, RECA, BRCC5, H	HsT16 Cycl	in dependent kir	nase 2			Name molecule A	Links molecule	Name molecule B	
RAD51 homolog (RecA homolog, E. coli)) (S. ce Cycl	Cyclin E1					A		
	Fano	Fanconi anemia protein E Fanconi anemia, complementation g				CG30169	UniProt	RecA protein homolog	
tein: BRCA2 protein	Fano						(Dasty2	BA UN	
Your query also matches 920 in	iteraction(s)	from other data	abases.	direct					
Interactiv		evidences	score	uneur	as	s. coloc.	enz. co	mplex. HT	
Interactic protein X & DMC1 Homo sapiens (Q145	65)	11	0.93	9	as:	5. COIOC.	enz. co	mplex. HT 1	
Interactic protein X # DMC1 Homo sapiens (Q145 X # PALB2 Homo sapiens (Q86)	65) YC2)	11 4	0.93 0.82	9 3	as: 2 1	5. COIOC.	enz. co	mplex. HT 1	
Interactic protein IP:57452E X DMC1 Homo sapiens (Q145 IP:40108E X RAD51 Homo sapiens (Q06)	i65) YC2) 609)	11 4 7	0.93 0.82 0.71	9 3 4	2 2 1 3	5. COIOC.	enz. co	mplex. HT 1	
Interactic protein IP:57452E X # DMC1 Homo sapiens (Q145 IP:40108E X # RAD51 Homo sapiens (Q06) # ABL1 Homo sapiens (P00519)	i65) YC2) 609) I)	11 4 7 1	0.93 0.82 0.71 0.28	9 3 4 1	2 1 3	5. COIOC.	enz. co	mplex. HT 1 1 1	
Interactic protein IP:57452E X # DMC1 Homo sapiens (Q145 IP:40108E X # PALB2 Homo sapiens (Q86 IP:40108E X # RAD51 Homo sapiens (Q06 IP:40109E # FYN Homo sapiens (P00519 IP:40109E # FYN Homo sapiens (P06241)	65) YC2) 609)))	11 4 7 1 1 1	0.93 0.82 0.71 0.28 0.28 0.28	9 3 4 1 1	as 2 1 3	5. COIOC.	enz. co	mplex. HT 1 1 1 1 1	
Interactic protein IP:57452E X # DMC1 Homo sapiens (Q145 IP:40108E X # PALB2 Homo sapiens (Q86 IP:40108E X # RAD51 Homo sapiens (Q06 IP:40109E # FYN Homo sapiens (P00519 IP:76301E X # RAD23A Homo sapiens (P50	i65) YC2) 609))) 4725)	11 4 7 1 1 1 1	0.93 0.82 0.71 0.28 0.28 0.28	9 3 4 1 1	2 1 3	5. COIOC.	enz. co	mplex. HT 1 1 1 1 1	

ATM

BRCA1

SHFM1

BRCA2

FANCD2

PALB2

Some resources that collect (and predict) interactions

- STRING http://string-db.org/
- GeneMania http://genemania.org

HMG20B

- APID http://bioinfow.dep.usal.es/apid
- GeneCards http://www.genecards.org

FANCG

0.996

0.996

Your Input:
BRCA2 Breast c break re (Homo s)

Predicted Func

RAD51	DNA rep
FANCD2	Fanconi
BRCA1	Breast c
FANCG	Fanconi
PALB2	Partner
TP53	Cellular
-	

VII International Course of Massive Data Analysis - 2011

Elocalization and s [...] (1188 aa)

ntigen NY-CO-13); Acts [...] (393 aa)

Techniques to explore protein-protein interactions

Non-screening techniques: Co-inmunoprecipitation, fluorescence resonance energy transfer, Dual polarization interferometry.

But <u>most of the data</u> we find in the databases come from **high-throughput techniques**:

Yeast two hybrid experiments

D. Two fusion proteins with interacting Bait and Prey

A. Gal4 transcription factor gene produces two domain protein (BD and AD), which is essential for transcription of the reporter gene (LacZ).

B,C. Two fusion proteins are prepared: Gal4BD+Bait and Gal4AD+Prey. None of them is usually sufficient to initiate the transcription (of the reporter gene) alone.

D. When both fusion proteins are produced and Bait part of the first interact with Prey part of the second, transcription of the reporter gene occurs.

If bait catch the prey (interaction) a reporter gene is expressed.

State of art of ppi interaction data

Issues with ppi data:

High-throughput experiments do not overlap.

- Methods do not reach saturation point.
- Lack of accuracy or coverage of some of them.
- False positives, non specific interactions (y2h, 50%).
- Bias in the functional categories each of the methods detect.
 - datasets based on purified complexes predict relatively few interactions for proteins involved in transport.
 - y2h fails in detecting proteins involved in translation.
 - y2h cannot detect interactions requiring three or more proteins or those depending on post-translational modifications.
 - Interactions occurring outside the nucleus are not detected by y2h.

Ppi annotation

Standard format to submit ppis

PSI-MI: HUPO Proteomics Standards Initiative: http://www.psidev.info/

Defines community standards for data representation in proteomics to facilitate data comparison, exchange and verification.

Controlled Vocabulary: Molecular Interactions Ontology

```
[Term]
id: MI:0018
name: two hybrid
def: "The classical two-hybrid system is a method that uses transcriptional activity as a measure of protein-
protein interaction. It relies on the modular nature of many site-specific transcriptional activators (GAL 4) ,
which consist of a DNA-binding domain and a transcriptional activation domain. The DNA-binding domain serves to
target the activator to the specific genes that will be expressed, and the activation domain contacts other
proteins of the transcriptional machinery to enable transcription to occur. The two-hybrid system is based on
the observation that the two domains of the activator need to be non-covalently brought together by the
interaction of any two proteins. The application of this system requires the expression of two hybrid.
Generally this assay is performed in yeast cell, but it can also be carried out in other organism."
[PMID:10967325, PMID:12634794, PMID:1946372]
related synonym: "2-hybrid" []
related synonym: "2H" []
related synonym: "2h" []
related synonym: "classical two hybrid" []
related synonym: "Gal4 transcription regeneration" []
related synonym: "two-hybrid" []
related synonym: "yeast two hybrid" []
exact synonym: "2 hybrid" []
is a: MI:0232 ! transcriptional complementation assay
```

Outline

- Protein-protein interactions
 - ppis are important
 - Resources
 - Detection methods

Interactome (networks)

- Description
- Graph theory
- Types of biological networks
- Functional profiling using ppi data
 - Scenario
 - In-house interactomes
 - Tools @ Babelomics
 - Snow
 - NetworkMiner

The interactome

Ppis are defined by pairwise interactions that leads to a complete net of interactions, the interactome.

The interactome

The interactions are the real source of complexity of the cell.

20,935 protein coding genes

650,000 predicted interactions

20,389 protein coding genes

240,000 predicted interactions

So, ppi information can be the clue to explain your phenotype!

The interactome and graph theory

Scale-free network instead of random network

(a) Random network

(b) Scale-free network

They are defined by a connections degree, number of connections of a node, distribution that approximates to a power law

 $P(k)~\sim~ck^{-\gamma}$

Being $2 < \gamma < 3$

This indicates that the network has a low number of highly connected nodes. There are a few proteins that connect the whole interactome.

Degree (connectivity or connections): number of edges connected to a node. Nodes with high degree are called hubs.

Betweenness: A measure of centrality of a node, it is defined by:

$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

 $\boldsymbol{\sigma}_{st}(\boldsymbol{V})$ is the number of shortest paths that pass through node V

 σ_{st} is total number of shortest paths in the graph.

Clustering coefficient (of a node): A measure of how interconnected the neighbours of that node are.

Proportion of links between the nodes within its neighbourhood divided by the number of links that could possibly exist between them.

 $C_i = \frac{2e_i}{n_i(n_i - 1)}$ e is the number of edges among the nodes connected to node 1 n is the number of neighbours of node i

To differentiate between star-shaped nets and more interconnected nets.

VII International Course of Massive Data Analysis - 2011

c = 1/3

Shortest path: The path with less edges that connects two nodes.

Component: A group of nodes connected among them.

Bicomponent: A group of nodes connected to other group of nodes by only an edge. The edge that joins two bicomponents is called articulation point.

Outline

- Protein-protein interactions
 - ppis are important
 - Resources
 - Detection methods
- Interactome (networks)
 - Description
 - Graph theory

Types of biological networks

- Functional profiling using ppi data
 - Scenario
 - In-house interactomes
 - Tools @ Babelomics
 - Snow
 - NetworkMiner

Types of biological networks

Good news! All networks can be studied using similar approaches

Outline

- Protein-protein interactions
 - ppis are important
 - Resources
 - Detection methods
- Interactome (networks)
 - Description
 - Graph theory
- Types of biological networks

Functional profiling using ppi data

- Scenario
- In-house interactomes
- Tools @ Babelomics
 - Snow
 - NetworkMiner

Functional profiling of genome scale experiments using ppi data

Protein-protein interactions

Functional profiling of genome scale experiments using ppi data

Interactome: Complete collection of protein-protein interactions in the cell. Transcriptome determines the real interactome.

Functional profiling - Methods scenario

Find interesting patterns of expression (clustering)

Network-based tools @ Babelomics

Two steps methods (functional classes enrichment)

http://babelomics.bioinfo.cipf.es/snow.html http://beta.babelomics.bioinfo.cipf.es/snow.html http://snow.bioinfo.cipf.es

Our interactomes

Summary of non redundant interactions per species:

Туре	Group	lds	Ath	Bta	Dme	Dre	Eco	Hsa	Mmu	Sce
Physical	All	Proteins	6708	293	37528	177	14194	82909	7238	86646
Physical	All	Genes	6184	260	26733	126	13889	77966	7026	86271
Physical	Curated	Proteins	1590	21	20966	12	1644	21655	1080	32099
Physical	Curated	Genes	1512	18	16332	8	1638	21336	1056	32070

Summary of non redundant interactors per species:

Туре	Group	lds	Ath	Bta	Dme	Dre	Eco	Hsa	Mmu	Sce
Physical	All	Proteins	3214	234	10208	109	2887	12119	4111	6093
Physical	All	Genes	2954	209	7723	72	2816	10782	3781	6021
Physical	Curated	Proteins	1251	34	7239	16	729	7333	1164	5394
Physical	Curated	Genes	1177	29	5989	11	725	7150	1122	5376

Abbreviation	Species
Ath	Arabidopsis thaliana
Bta	Bos taurus
Dre	Danio rerio
Dme	Drosophila melanogaster
Eco	Escherichia coli (strain K12)
Hsa	Homo sapiens
Mmu	Mus musculus
Sce	Saccharomyces cerevisiae

Databases: IntAct, MINT, BioGrid

Two interactomes per species: All interactions, Curated (ppis annotated with two different techniques).

Genes have a one to many relationship with proteins. There is not a real interactome for genes but our users usually come with gene lists.

Mapping genes (many potential proteins) into a proteins interactome may give a fake disperse network.

Snow Studying networks in the omic work

Goal

To develop a methodology that may extract from lists of proteins/genes the ppi networks acting and evaluates whether they have importance in the cooperative behaviour of the list.

How we evaluate the cooperative behaviour of a list of proteins/genes in terms of its ppi network parameters?

Two different approximations

- r Role in the complete interactome.
- Cooperative behaviour (Minimal Connected Network)

Role in the interactome

The list of proteins mapped into the complete interactome may provide clues about the importance of certain proteins.

Role in the interactome

Comparison of parameters distributions of the lists versus complete interactome distributions applying a Kolmogorov-Smirnov test.

Results indicate whether the set of prots/genes are collectively ...

- In a central position in the interactome (betweenness).
- If they are highly connected (degree of connection).
- If they are in a very connected area (cluster coefficient).

Evaluating the cooperative behaviour

Your genes might be part of a network that explain the phenotype.

but they reveal an interesting subnetwork.

It seems we have have found something about the cooperative behaviour of our list!!!

Evaluating the cooperative behaviour

Minimal connected network (MCN)

Find all shortest paths for all the pairs of nodes.

 Accept paths that connect two proteins in the list either directly or through a predetermined number of not-in-list proteins (0-3).

Evaluating the MCN

Parameters to evaluate: degree, betweenness, clustering coefficient & number of components.

Comparison of parameters distributions of the network versus set of same size random distributions applying a Kolmogorov-Smirnov test.

You can use lists up to 200 nodes (prots/genes) with interactomic data (the list can be bigger).

Snow Studying networks in the omic work

Evaluating the MCN

connections degree

clustering coefficient

Minimal Connected Network topological evaluation

Number of components with more than 1 node : 1

Number of components [95% confidence interval] : 12 [19, 34]

Evaluating the MCN

This tells us whether the complete list of proteins is ...

- More/less connected than a network coming from a random list (connections)
- Shape of the network in terms of centrality and internal connectivity (betweenness, clustering coefficient)
- Compact/Disperse network (n. of components)

Finding statistically significance in the different parameters points to different possible topologies of the network.

gene expression and functional profiling analysis suite

Upload data	Processing	Expression	Genomic	Functional analysis	Utilities	
			nablominau	ez@amail.com.working	on project Cluestring	8.60 Mb of 1.00 Gb (0.84

Functional analysis

- Single enrichment analysis
 - FatiGO

Provides significant over-representation of functional annotations by single enrichment analysis

Marmite

Single enrichment analysis using text-mining derived annotations

SNOW

PPI Network enrichment analysis. Finds subnetworks of protein-protein interactions with significant network parameters within a list of genes

Define you	Define your input data				
⊙ One ⊙ Con	e list mparing two lists				
Select you	our data				
browse	browse server no data selected.				
Species					
Species	Homo sapiens				
Nature of	Ature of Mus musculus Drosophila melanogaster				
 ○ Tra ○ Prc ○ Ge_ 	Saccharomyces cerevisiae Arabidopsis thaliana Bos taurus Escherichia coli (K12) Own				

///

Side for statis	Side for statistical tests				
Side for Kolgomorov test	7.750-0				
	 less 				
) grea	ter			
Random netw	orks p	arameter	S		
Number of rar	doms	500 ‡			
Minimal conn	ected	1000 2000	eneration parameters		
Max. number	of exterr	al proteins	introduced 1		

Nature of yo	our lists
O Trans	cripts
Protei	ins
O Genes	S
Select inter	actome of reference
Select	
interaction	
	all ppis
	O poin detected by at least two methods (oursted)

///4/

Snow - Results

Role in the interactome

clustering coefficient

0.00

Evaluation of the MCN

pval < 0.001

connections degree

pval < 0.001

clustering coefficient

1.0	A	·····
0.9		
0.8		
0.7		
0.6		
0.5		
0.4		
0.3		
0.2		
0.1	•	
0.0	•	
	randoms	subnet1
	📕 randoms 📕 subi	net 1

pval < 0.001

Information about components

Number of components with more than 1 node : 1

Number of components [95% confidence interval] : 12 [19, 34]

Snow - Editing your network

Information	Search	Databases	Nodes editor	Layout				Clean network
Search for any	field in the	nodes						
apoptosis		Search						
🗹 Descrip	tions					Nodes	Edit	
🗹 GO:0006	916: A pro	cess which dire	ectly inhibits any o	of the step	s required for cell death by apoptosis.	□ YWHAZ	Show or hide nodes:	
₫ GO:0042	981: Any p	process that mo	odulates the occu	rrence or r	ate of cell death by apoptosis.	TRAF6	Change node shape: Square Circle	
€ GO:0006	917: A pro	cess that direc	tly activates any	of the step	s required for cell death by apoptosis.	BRCA1	Change color nodes: #123456	
GO:0008 of apoptosis	630: A cas (program	cade of proces med cell death)	ses initiated by t).	he detectio	n of DNA damage and resulting in the inducti	on PRKDC		
GO:0043 apoptosis.	065: Any	process that	activates or inc	reases the	frequency, rate or extent of cell death	by TP53		

Information	Search	Databases	Nodes editor	Layout				Clean network
Edit nodes by t	dit nodes by typing its id separated by comma, for instance: Q7Z4G1,P24530 Hide external nodes							
Show isola	ted nodes s							
					Show or hide nodes:	Show	Hide	
					Change node shape:	Square	Circle	
					Change color nodes:	#123456		

Snow - Editing your network

NetworkMiner

Threshold free methods (gene set enrichment)

NetworkMiner - web

liter your list	
Select filter	
Subset of the l	et .
O Subset of the l	31
Number items 200	
items with ranking o	exempter below (excending list) or above (descending list) 0.05
	arameter below (ascending list) or above (descending list) 10,02
	arameter below (ascending list) or above (descending list) 0.05
Order your list	arameter below (ascending list) or above (descending list) 0.05
Order your list	
Order your list Select order	
Order your list Select order Ascending	
Order your list Select order Ascending Descending	
Order your list Select order Ascending Descending	
Order your list Select order Ascending Descending Select interactome	
Order your list Select order	piens
Order your list Select order	piens myces cerevisiae
Order your list Select order Ascending Descending Select interactome Specii ✓ Homo sa Sacchard Drosoph	piens myces cerevisiae ila melanogaster

NetworkMiner - web

NetworkMiner - Results

Evaluation of the MCN

pval < 0.001

connections degree 17.5 15.0

pval < 0.001

clustering coefficient

randoms subnet1	
randoms subnet1	
•	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1.0	

pval < 0.001

Information about components

Number of components with more than 1 node : 1

Number of components [95% confidence interval] : 12 [19, 34]

NetworkMiner - Results

Questions

Time for some exercises!!!

Snow On-line examples

SNOW

NetworkMiner On-line examples

Network Miner

V Online examples (test the form with example data)	
 Example 1: Genes_up_in_control_Vs_case_Hirschsprung_disease Example 2: Essential_genes_in_cancer_cell_line_K562 	
	2

Some datasets to run SNOW

http://bioinfo.cipf.es/babelomicstutorial/

Here are several examples of lists of genes selected to differentiate two samples in microarray experiments. The description of the experiment is given.

The SNOW parameters used to perform the analyses were:

- Interactome of reference: ppis detected by two methods.
- Maximum number of external proteins: 1
- Nature of the lists: Genes

Donwload the lists and perform your own SNOW analyses choosing same or different parameters. For a reference we give the results pages as you will obtain them, have a look at them and compare them with SNOW results using different parameters taking into account that results shown here may have been run with different version of ppi data.

Example number	Dataset	Description
2.1	<pre>brca1_overexp_up</pre>	Upregulated by induction of exogenous BRCA1 in EcR-293 cells
2.2	<pre>brca1_overexp_dn</pre>	Downregulated by induction of exogenous BRCA1 in EcR-293 cells
2.3	serum_fibroblast_cellcycle	Cell-cycle dependent genes regulated following exposure to serum in a variety of human fibroblast cell lines
2.4	ageing_brain_dn	Age-downregulated in the human frontal cortex
2.5	brca1_sw480_up	Up-regulated by infection of human colon adenocarcinoma
		International Course of Massive Data Analysis - 20

Some old stuff ...

A case of study

BRCA1 transcriptionally regulates genes involved in breast tumorigenesis

Piri L. Welcsh*, Ming K. Lee*, Rachel M. Gonzalez-Hernandez*[†], Daniel J. Black*, Mamatha Mahadevappa[‡], Elizabeth M. Swisher*, Janet A. Warrington[‡], and Mary-Claire King*[§]

Departments of *Medicine and Genome Sciences and [†]Pathology, University of Washington, Health Sciences Room K-160, Seattle, WA 98195-7720; and [‡]Affymetrix, Inc., Santa Clara, CA 95051

Communicated by Arno G. Motulsky, University of Washington, Seattle, WA, March 28, 2002 (received for review December 3, 2001)

Loss of function of BRCA1 caused by inherited mutation and tissuespecific somatic mutation leads to breast and ovarian cancer. Nearly all BRCA1 germ-line mutations involve truncation or loss of the C-terminal BRCT transcriptional activation domain, suggesting that transcriptional regulation is a critical function of the wild-type gene. The purpose of this project was to determine whether there is a link between the role of BRCA1 in transcriptional regulation and its role in tumor suppression. We developed a cell line (in which BRCA1 can be induced) and used microarray analysis to compare transcription profiles of epithelial cells with low endogenous levels of BRCA1 vs. transcription profiles of cells with 2-4-fold higher induced levels of expression of BRCA1. At these levels of expression, BRCA1 did not induce apoptosis. Undirected duster analysis of six paired experiments revealed 373 genes, the expression of which was altered significantly and consistently by BRCA1 induction. Expression of 62 genes was altered more than 2-fold. BRCA1-regulated genes associated with breast tumorigenesis included the estrogen-responsive genes MYC and cyclin D1, which are overexpressed in many breast tumors; STAT1 and JAK1, key components of the cytokine signal transduction pathway; the extracellular matrix protein laminin 3A; ID4, an inhibitor of DNA-binding transcriptional activators, which in turn negatively regulates BRCA1 expression; and the prohormone stanniocalcin, expression of which is lost in breast tumor cells. Coordinated expression of BRCA1 with ID4 and with stanniocalcin was confirmed in primary breast and ovarian tumors.

17). Overexpression of BRCA1 induces genes in the apoptotic pathway (18, 19). Increased expression of BRCA1 leads to repression of estrogen receptor (ER)-mediated transcription (20–22).

Our purpose in this project was to determine whether there is a link between the role of BRCA1 in transcriptional regulation and its role in tumor suppression by identifying transcriptional targets of BRCA1 that are involved in breast tumorigenesis. We developed an epithelial cell line in which BRCA1 could be induced at modest levels and then used microarray technology to investigate changes in the cellular transcription profile in response to induction of BRCA1. In six replicate experiments, after induction of BRCA1 expression levels of 373 genes were altered consistently, 62 of them at least 2-fold. Among those implicated in breast tumorigenesis are cyclin D1, *JAK1* and *STAT1*, *MYC*, and *ID4*. These experiments also revealed that BRCA1 induction was highly correlated with expression of the extracellular matrix protein laminin A3 (*LAMA3*) and with stanniocalcin (*STC1*), a prohormone whose loss may serve as a marker of breast and ovarian cancer.

Materials and Methods

Generation of Cell Lines with Inducible BRCA1 Expression. A fulllength *BRCA1* cDNA was assembled from partial cDNA clones kindly provided by I. M. Verma (The Salk Institute, La Jolla, CA). Sequence-verified, full-length wild-type *BRCA1* was cloned downstream of the ecdysone-inducible promoter in pIND (Invitrogen). EcR-293 (Invitrogen) is a human embryonal kidney epithelial

7560-7565 | PNAS | May 28, 2002 | vol. 99 | no. 11

www.pnas.org/cgl/dol/10.1073/pnas.062181799

A case of study

A list of 168 genes induced by over-expression of BRCA1 as described in Welcsh et al., 2002 which doesn't include BRCA1

The MCN has a large component (79 genes) where BRCA1 (ENSG0000012048) is included

A classical enrichment analysis gave no significant over-representation of Gene Ontology terms or KEGG pathways in such component compared with the rest of the genome showing the multi-functionality of BRCA1

A case of study

List's role within complete interactome

Articulation points:

VII International Course of Massive Data Analysis - 2011

List1:70

A case of study

- BRCA1 presents a high centrality measure (betweenness)
- BRCA1 interacts directly with genes such as:
 - STAT1 (its activation by kinase JAK1, interaction shown in the results, mediate cytokine and growth-factor signal transduction pathways),
 - HDAC1 (Histone deacetylase involved in the control of cell proliferation and differentiation),
 - UBE2D3 (Ubiquitin-conjugating enzyme E2D 3, responsible for the ubiquitination of the tumor-suppressor protein p53)
 - CD2 (involved in induction of mitosis).
- The most central genes are:
 - GRB2 (ENSG00000177885), STAT1, HTATIP, BRCA1 (ENSG00000012048), CREB1, IQGAP1, ANXA2, CALM2 and EGFR (ENSG00000146648)
 - being BRCA1 and EGFR two genes not included in the original list but introduced by calculating the MCN.