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Some questions

How do we measure expression?

What is differential expression?

Experimental design in RNA-Seq

Can we used the same statistics as in microarrays?

Do I need any “normalization”?
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Some definitions

Expression level

RNA-Seq: The number of reads (counts) mapping to the biological feature of
interest (gene, transcript, exon, etc.) is considered to be linearly
related to the abundance of the target feature.

Microarrays: The abundance of each sequence is a function of the fluorescence
level recovered after the hybridization process.
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Sequencing depth: Total number of reads mapped to the genome. Library size.

Gene length: Number of bases.

Gene counts: Number of reads mapping to that gene (expression measurement).
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What is differential expression?

A gene is declared differentially expressed if an observed difference or change in
read counts between two experimental conditions is statistically significant, i.e.
whether it is greater than what would be expected just due to natural random
variation.

Statistical tools are needed to make such a decision by studying counts
probability distributions.
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RNA-Seq expression data

Experimental design

Pairwise comparisons: Only two experimental conditions or groups are to be
compared.

Multiple comparisons: More than two conditions or groups.

Replication

Biological replicates. To draw general conclusions: from samples to population.

Technical replicates. Conclusions are only valid for compared samples.
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Why Normalization?

RNA-seq biases

Influence of sequencing depth: The higher sequencing depth, the higher counts.

Dependence on gene length: Counts are proportional to the transcript length
times the mRNA expression level.

Differences on the counts distribution among samples.
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Why Normalization?

RNA-seq biases

Influence of sequencing depth: The higher sequencing depth, the higher counts.

Dependence on gene length: Counts are proportional to the transcript length
times the mRNA expression level.

Differences on the counts distribution among samples.

Options

1 Normalization: Counts should be previously corrected in order to minimize these
biases.

2 Statistical model should take them into account.
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Some Normalization Methods

RPKM (Mortazavi et al., 2008): Counts are divided by the transcript length
(kb) times the total number of millions of mapped reads.

RPKM =
number of reads of the region

total reads
1000000

× region length
1000

Upper-quartile (Bullard et al., 2010): Counts are divided by upper-quartile of
counts for transcripts with at least one read.

TMM (Robinson and Oshlack, 2010): Trimmed Mean of M values.

Quantiles, as in microarray normalization (Irizarry et al., 2003).

FPKM (Trapnell et al., 2010): Instead of counts, Cufflinks software generates
FPKM values (Fragments Per Kilobase of exon per Million fragments mapped)
to estimate gene expression, which are analogous to RPKM.
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Example on RPKM normalization

Sequencing depth

Marioni et al., 2008

Kidney: 9.293.530 reads

Liver: 8.361.601 reads

RPKM normalization

Length: 1500 bases.

Kidney: RPKM = 620
9293530

106 × 1500
1000

= 44,48

Liver: RPKM = 746
8361601

106 × 1500
1000

= 59,48
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Differential Expression

Parametric approaches

Counts are modeled using known probability distributions such as Binomial, Poisson,
Negative Binomial, etc.

R packages in Bioconductor:

edgeR (Robinson et al., 2010): Exact test based on Negative Binomial
distribution.

DESeq (Anders and Huber, 2010): Exact test based on Negative Binomial
distribution.

DEGseq (Wang et al., 2010): MA-plots based methods (MATR and MARS),
assuming Normal distribution for M|A.

baySeq (Hardcastle et al., 2010): Estimation of the posterior likelihood of
differential expression (or more complex hypotheses) via empirical Bayesian
methods using Poisson or NB distributions.
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Non-parametric approaches

No assumptions about data distribution are made.

Fisher’s exact test (better with normalized counts).

cuffdiff (Trapnell et al., 2010): Based on entropy divergence for relative
transcript abundances. Divergence is a measurement of the ”distance”between
the relative abundances of transcripts in two difference conditions.

NOISeq (Tarazona et al., coming soon)
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Drawbacks of differential expression methods

Parametric assumptions: Are they fulfilled?

Need of replicates.

Problems to detect differential expression in genes with low counts.

NOISeq

Non-parametric method.

No need of replicates.

Less influenced by sequencing depth or number of counts.
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NOISeq

1 Compute for each gene:
M = log2

expression1
expression2

D = |expression1–expression2 |
2 Compute M-D in noise by comparing each pair of replicates within the same

condition.

3 Probability for a gene of being differentially expressed: Obtained by comparing
M-D values of that gene against noise distribution.

4 A gene is declared as differentially expressed if this probability is higher than q.
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NOISeq

NOISeq-real

Replicates are available for each condition.

Compute M-D in noise by comparing each pair of replicates within the same
condition.

NOISeq-sim

No replicates are available at all.

NOISeq simulates technical replicates for each condition. The replicates are
generated from a multinomial distribution taking the counts in the only sample
as the probabilities for the distribution.

Compute M-D in noise by comparing each pair of simulated replicates within the
same condition.
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NOISeq

Input

Data: datos1, datos2

Features length: long (only if length correction is to be applied)

Normalization: norm = {“rpkm”, “uqua”, “tmm”, “none”}; lc = “length
correction”

Simulation: nss = “number of replicates to be simulated”; pnr = “total counts
in each simulated replicate”; v = variability for pnr

Probability cutoff: q (≥ 0,8)

Others: k = 0,5
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NOISeq

Output

Differential expression probability. For each feature, probability of being
differentially expressed.

Differentially expressed features. List of features names which are differentially
expressed according to q cutoff.

M-D values. For signal (between conditions and for each feature) and for noise
(among replicates within the same condition, pooled).
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Exercises

Execute in an R terminal the code provided in exerciseDEngs.r

Reading data

simCount <- read.delim("simCount.txt", row.names = 1, header = TRUE)

head(simCount)

depth <- colSums(simCount)

Differential Expression by NOISeq

NOISeq-real
res1noiseq <- noiseq(simCount[,1:5], simCount[,6:10], nss = 0, q = 0.8)

NOISeq-sim
res2noiseq <- noiseq(simCount[,1:5], simCount[,6:10], q=0.8, pnr=0.2,

nss=5)
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Some remarks

Experimental design is decisive to answer correctly your biological questions.

Differential expression methods for RNA-Seq data must be different to
microarray methods.

Normalization should be applied to raw counts, at least a library size correction.
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For Further Reading

Oshlack, A., Robinson, M., and Young, M. (2010) From RNA-seq reads to
differential expression results. Genome Biology , 11, 220+.
Review on RNA-Seq, including differential expression.

Auer, P.L., and Doerge R.W. (2010) Statistical Design and Analysis of RNA
Sequencing Data. Genetics, 185, 405-416.

Bullard, J. H., Purdom, E., Hansen, K. D., and Dudoit, S. (2010) Evaluation of
statistical methods for normalization and differential expression in mRNA-Seq
experiments. BMC Bioinformatics, 11, 94+.
Normalization methods (including Upper Quartile) and differential expression.

Tarazona, S., Garćıa-Alcalde, F., Dopazo, J., Ferrer A., and Conesa, A. (in
preparation) Differential expression in RNA-seq: a matter of depth.
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