Differential Expression in RNA-Seq

Sonia Tarazona starazona@cipf.es

Genomics of Gene Expression Lab, Bioinformatics Department Centro de Investigación Príncipe Felipe, Valencia, Spain

PRINCIPE FELIPE CENTRO DE INVESTIGACION

Valencia, March 2011

Sonia Tarazona Differential Expression in RNA-Seq

Some questions Some definitions RNA-seq expression data

Outline

- Some questions
- Some definitions
- RNA-seq expression data
- 2 Normalization

Some questions Some definitions RNA-seq expression data

Some questions

- How do we measure expression?
- What is differential expression?
- Experimental design in RNA-Seq
- Can we used the same statistics as in microarrays?
- Do I need any "normalization"?

Some questions Some definitions RNA-seq expression data

Some definitions

Expression level RNA-Seq: The number of reads (counts) mapping to the biological feature of interest (gene, transcript, exon, etc.) is considered to be linearly related to the abundance of the target feature. Microarrays: The abundance of each sequence is a function of the fluorescence level recovered after the hybridization process.

Sonia Tarazona Differential Expression in RNA-Seq

Some questions Some definitions RNA-seq expression data

Some definitions

- Sequencing depth: Total number of reads mapped to the genome. Library size.
- Gene length: Number of bases.
- Gene counts: Number of reads mapping to that gene (expression measurement).

Some questions Some definitions RNA-seq expression data

Some definitions

What is differential expression?

- A gene is declared differentially expressed if an observed difference or change in read counts between two experimental conditions is statistically significant, i.e. whether it is greater than what would be expected just due to natural random variation.
- Statistical tools are needed to make such a decision by studying counts probability distributions.

Some questions Some definitions RNA-seq expression data

RNA-Seq expression data

Experimental design

- Pairwise comparisons: Only two experimental conditions or groups are to be compared.
- Multiple comparisons: More than two conditions or groups.

Replication

- Biological replicates. To draw general conclusions: from samples to population.
- Technical replicates. Conclusions are only valid for compared samples.

Why? Methods Examples

Outline

2 Normalization

- Why?
- Methods
- Examples

Why? Methods Examples

Why Normalization?

RNA-seq biases

• Influence of sequencing depth: The higher sequencing depth, the higher counts.

Why? Methods Examples

Why Normalization?

RNA-seq biases

• Dependence on gene length: Counts are proportional to the transcript length times the mRNA expression level.

Why? Methods Examples

Why Normalization?

RNA-seq biases

• Differences on the counts distribution among samples.

Why? Methods Examples

Why Normalization?

RNA-seq biases

- Influence of sequencing depth: The higher sequencing depth, the higher counts.
- Dependence on gene length: Counts are proportional to the transcript length times the mRNA expression level.
- Differences on the counts distribution among samples.

Options

- Normalization: Counts should be previously corrected in order to minimize these biases.
- 2 Statistical model should take them into account.

Why? Methods Examples

Some Normalization Methods

• **RPKM** (Mortazavi et al., 2008): Counts are divided by the transcript length (kb) times the total number of millions of mapped reads.

 $\textit{RPKM} = \frac{\textit{number of reads of the region}}{\frac{\textit{total reads}}{100000}} \times \frac{\textit{region length}}{1000}}{1000}$

- Upper-quartile (Bullard et al., 2010): Counts are divided by upper-quartile of counts for transcripts with at least one read.
- TMM (Robinson and Oshlack, 2010): Trimmed Mean of M values.
- Quantiles, as in microarray normalization (Irizarry et al., 2003).
- FPKM (Trapnell et al., 2010): Instead of counts, Cufflinks software generates FPKM values (Fragments Per Kilobase of exon per Million fragments mapped) to estimate gene expression, which are analogous to RPKM.

Why? Methods Examples

Example on RPKM normalization

EnsemblGenelD	kidney	liver
ENSG00000146556	0	0
ENSG00000197194	0	0
ENSG00000197490	0	0
ENSG00000205292	0	0
ENSG00000177693	0	0
ENSG00000209338	0	0
ENSG00000196573	0	0
ENSG00000177799	0	0
ENSG00000209341	0	0
ENSG00000209342	9	1
ENSG00000209343	0	0
ENSG00000209344	0	0
ENSG00000209346	0	0
ENSG00000209349	0	0
ENSG00000209350	27	161
ENSG00000209351	0	0
ENSG00000209352	2	2
ENSG00000212679	620	746
ENSG00000212678	64591	44870
ENSG0000185097	0	0
ENSG0000209353	0	0

Sequencing depth

Marioni et al., 2008

- Kidney: 9.293.530 reads
- Liver: 8.361.601 reads

RPKM normalization

• Length: 1500 bases.

• Kidney: RPKM =
$$\frac{620}{\frac{9293530}{106} \times \frac{1500}{1000}} = 44,48$$

• Liver: RPKM =
$$\frac{746}{\frac{8361601}{10^6} \times \frac{1500}{1000}} = 59,48$$

Why? Methods Examples

Example

EnsemblGeneID	Length	kidney	liver	RPKM kidney	RPKM liver	UQUA kidney	UQUA liver	
ENSG00000187642	3035	39	7	1.38	0.28	382.37	74.66	
ENSG00000188290	877	54	9	6.63	1.23	981.59	182.39	
ENSG00000187608	634	59	63	10.01	11.88	1252.58	1484.31	
ENSG00000188157	7353.5	2108	259	30.85	4.21	13193.25	1796.14	
ENSG00000131591	2039.83	54	34	2.85	1.99	637.77	445.46	
ENSG00000215916	2008	57	34	3.05	2.03	678.67	448.97	
ENSG00000207730	95	0	0	0	0	0	0	
ENSG00000207607		Q.	Q.	Ω.	Q	Q.	A	
ENSG00000198976	83	2	0	2.59	0	113.62	0	
ENSG00000205231	3532	4	0	0.12	0	35.71	0	
ENSG00000162571	2060.25	4	0	0.21	0	47.82	0	
ENSG00000186891	964	0	3	0	0.37	0	57.78	
ENSG00000186827	987	5	1	0.55	0.12	86.6	19.42	
ENSG0000078808	1870.67	1136	883	65.34	56.45	14095	12172.11	
ENSG00000176022	2793	143	165	5.51	7.07	1453.42	1853.37	
ENSG00000184163	1036	16	14	1.66	1.62	268.45	258.3	
ENSG00000160087	1614.14	315	290	21	21.49	4220.61	4320	
ENSG00000162572	2635.86	47	28	1.92	1.27	489.42	323.8	
ENSG00000131584	3861.75	379	216	10.56	6.69	3281.75	2076.27	
ENSG00000169972	1239	105	143	9.12	13.8	1611.32	2423.83	
ENSG00000127054	1813.5	496	330	29.43	21.76	6250.88	4618.39	
ENSG00000187488	2193	17	6	0.83	0.33	194.62	76.17	
ENSG00000215792	2193	17	6	0.83	0.33	194.62	76.17	
ENSG00000169962	3402	2	0	0.06	0	18.2	0	
ENSG00000107404	2554	51	16	2.15	0.75	542.14	188.61	
ENSG00000162576	2169.67	56	11	2.78	0.61	645.79	138.29	
ENSG00000175756	874.25	0	0	0	0	0	0	
ENSG00000131586	676	9	0	1.43	0	187.59	0	
ENSG0000205116	492	7	0	1.53	0	175.4	0	
ENSG00000179403	2442.5	53	46	2.33	2.25	578.29	553.48	
ENSG00000215915	2800.5	0	4	0	0.17	0	46.38	

Sonia Tarazona

Differential Expression in RNA-Seq

Methods NOISeq Exercises Concluding

Outline

3 Differential Expression

Methods

- NOISeq
- Exercises

Concluding

Methods NOISeq Exercises Concluding

Differential Expression

Parametric approaches

Counts are modeled using known probability distributions such as Binomial, Poisson, Negative Binomial, etc.

R packages in Bioconductor:

- edgeR (Robinson et al., 2010): Exact test based on Negative Binomial distribution.
- **DESeq** (Anders and Huber, 2010): Exact test based on Negative Binomial distribution.
- **DEGseq** (Wang et al., 2010): MA-plots based methods (MATR and MARS), assuming Normal distribution for *M*|*A*.
- **baySeq** (Hardcastle et al., 2010): Estimation of the posterior likelihood of differential expression (or more complex hypotheses) via empirical Bayesian methods using Poisson or NB distributions.

Methods NOISeq Exercises Concluding

Differential Expression

Non-parametric approaches

No assumptions about data distribution are made.

• Fisher's exact test (better with normalized counts).

	KIDNEY	LIVER	Total
ENSG00000188157	31	4	35
Remaining genes	809347	799468	1608815
Total	809378	799472	

- **cuffdiff** (Trapnell et al., 2010): Based on entropy divergence for relative transcript abundances. Divergence is a measurement of the "distance" between the relative abundances of transcripts in two difference conditions.
- NOISeq (Tarazona et al., coming soon)

Methods NOISeq Exercises Concluding

Differential Expression

Drawbacks of differential expression methods

- Parametric assumptions: Are they fulfilled?
- Need of replicates.
- Problems to detect differential expression in genes with low counts.

Methods NOISeq Exercises Concluding

Differential Expression

Drawbacks of differential expression methods

- Parametric assumptions: Are they fulfilled?
- Need of replicates.
- Problems to detect differential expression in genes with low counts.

NOISeq

- Non-parametric method.
- No need of replicates.
- Less influenced by sequencing depth or number of counts.

Methods NOISeq Exercises Concluding

NOISeq

- Compute for each gene: $M = \log_2 \frac{expression_1}{expression_2}$
 - $D = |expression_1 expression_2|$
- **2** Compute M-D in noise by comparing each pair of replicates within the same condition.
- Probability for a gene of being differentially expressed: Obtained by comparing M-D values of that gene against noise distribution.
- 4 gene is declared as differentially expressed if this probability is higher than q.

Methods NOISeq Exercises Concluding

NOISeq

NOISeq-real

- Replicates are available for each condition.
- Compute M-D in noise by comparing each pair of replicates within the same condition.

Methods NOISeq Exercises Concluding

NOISeq

NOISeq-real

- Replicates are available for each condition.
- Compute M-D in noise by comparing each pair of replicates within the same condition.

NOISeq-sim

- No replicates are available at all.
- NOISeq simulates technical replicates for each condition. The replicates are generated from a multinomial distribution taking the counts in the only sample as the probabilities for the distribution.
- Compute M-D in noise by comparing each pair of simulated replicates within the same condition.

Methods NOISeq Exercises Concluding

NOISeq

Input

- Data: datos1, datos2
- Features length: long (only if length correction is to be applied)
- Normalization: *norm* = { "rpkm", "uqua", "tmm", "none" }; *lc* = "length correction"
- Simulation: *nss* = "number of replicates to be simulated"; *pnr* = "total counts in each simulated replicate"; *v* = variability for *pnr*
- Probability cutoff: $q \ (\geq 0.8)$
- Others: *k* = 0,5

Methods NOISeq Exercises Concluding

NOISeq

Output

- Differential expression probability. For each feature, probability of being differentially expressed.
- Differentially expressed features. List of features names which are differentially expressed according to *q* cutoff.
- M-D values. For signal (between conditions and for each feature) and for noise (among replicates within the same condition, pooled).

Methods NOISeq Exercises Concluding

Exercises

Execute in an R terminal the code provided in exerciseDEngs.r

Reading data

simCount <- read.delim("simCount.txt", row.names = 1, header = TRUE)
head(simCount)
depth <- colSums(simCount)</pre>

Differential Expression by NOISeq

```
NOISeq-real
res1noiseq <- noiseq(simCount[,1:5], simCount[,6:10], nss = 0, q = 0.8)
NOISeq-sim
res2noiseq <- noiseq(simCount[,1:5], simCount[,6:10], q=0.8, pnr=0.2,
nss=5)</pre>
```

Methods NOISeq Exercises Concluding

Some remarks

- Experimental design is decisive to answer correctly your biological questions.
- Differential expression methods for RNA-Seq data must be different to microarray methods.
- Normalization should be applied to raw counts, at least a library size correction.

Methods NOISeq Exercises Concluding

For Further Reading

- Oshlack, A., Robinson, M., and Young, M. (2010) From RNA-seq reads to differential expression results. *Genome Biology*, **11**, 220+. *Review on RNA-Seq, including differential expression.*
- Auer, P.L., and Doerge R.W. (2010) Statistical Design and Analysis of RNA Sequencing Data. *Genetics*, **185**, 405-416.

Bullard, J. H., Purdom, E., Hansen, K. D., and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. *BMC Bioinformatics*, **11**, 94+. *Normalization methods (including Upper Quartile) and differential expression.*

Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer A., and Conesa, A. (in preparation) Differential expression in RNA-seq: a matter of depth.