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6.1 Introduction

From a historical perspective we can distinguish an initial period in the DNA
microarray technology in which almost all publications were related to re-
producibility and sensitivity issues. Thus, many classical microarray papers
dating from the late nineties were simple proof-of-principle experiments (Eisen
et al., 1998; Perou, et al., 1999), in which only cluster analysis was applied
in order to check whether differences at gene expression level could reproduce
macroscopic observations. Later, specificity became a main concern as a nat-
ural reaction against quite liberal interpretations of microarray experiments
made by some researchers, such as the fold change criterion to select differen-
tially expressed genes. It soon became obvious that genome-scale experiments
need to be carefully analyzed, because many apparent associations happened
merely by chance when large amounts of data were studied (Ge et al., 2003).
In this context, different methods for the adjustment of p-values, which are
considered standard today, started to be extensively used (Benjamini et al.,
2001; Storey et al., 2003) . More recently, the use of microarrays for build-
ing predictive models of clinical outcomes (van’t Veer et al., 2002), albeit
not being free of criticisms (Simon, 2005), fuelled the use of the technology
because of its practical implications. There are still some concerns with the
cross-platform coherence of results, but it seems clear that intra-platform re-
producibility is high (Moreau et al., 2003), and, although the overlap between
the lists of genes differentially expressed among platforms was low, the enrich-
ment in biologically relevant labels emerging from these lists was consistent
(Bammler, et al., 2005). This fact clearly points to the importance of the in-
terpretation of experiments in terms of their biological implications instead of
restricting them to a mere comparison of lists of gene identifiers (Al-Shahrour
et al., 2005b; Al-Shahrour, et al., 2005c).

Despite the fact that clustering is one of the most popular methodolo-
gies and the first one in being used in the field of microarray data analysis
(Quackenbush, 2001; Slonim, 2002), it has often been improperly used (Simon
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et al., 2003). The literature on DNA microarrays provides numerous examples
for the inadequate use of clustering for tackling problems of class compari-
son. Although cluster analysis is appropriate for class discovery, it tends to
be inefficient for class comparison or class prediction. An important caveat
when analysing DNA microarray experiments is that, although these are not
based on gene-specific mechanistic hypotheses, they must be designed with
clear objectives. Three typical types of objectives are class comparison, class
prediction and class discovery (Golub et al., 1999). Clustering, also known
as unsupervised analysis, belongs to this last category because no previous
information about the class structure of the data set is used in the study.
Cluster analysis makes reference to an extensive set of methods for partition-
ing samples into groups on the basis of their respective differences, referred to
as distances (D Haeseleer, 2005). Usually, the distance measures are computed
with regard to the complete set of genes represented on the array. Cluster-
ing can be done on the experiments (based on all the genes) or on the genes
(across all the experiments). Although the methods used can be exactly the
same, a note of caption must be introduced here because it is not uncommon
that a given class of experiments (disease, molecular subtype, etc.) is distin-
guished by a relatively small number of genes, whose effect may end up being
diluted by the irrelevant genes. To circumvent this problem, there exists a
family of clustering methods, generically known as biclustering, in which the
aim is to find groups of genes with coordinated expression only across a subset
of experimental conditions (Cheng et al., 2000; Lazzeroni et al., 2002; Tanay
et al., 2002; Sheng et al., 2003).

There are other types of data that deserve particular attention: Time series
or dose-response data. In this case, clustering of experiments is meaningless
because there are sequential data and one is typically interested in clustering
genes across all the time (or dosage) points. Recently, time series are gaining
importance because the experimental methods for synchronising cell cultures
are becoming more accurate, constituting nowadays a 30% of the total number
of DNA microarray experiments published (Simon et al., 2005). While typ-
ical microarray assays are designed to study static experimental conditions,
in time series a temporal process is measured. Time series offer the possibil-
ity of identifying the dynamics of gene activation, which might allow to infer
causal relationships. An important difference between these two types of ex-
periments is that, while static data from a sample population (e.g., diseased
cases, healthy controls, etc.) are assumed to be independent, time series data
are characterized by displaying a strong autocorrelation between successive
points (Bar-Joseph, 2004). Initially, time series were analyzed using methods
originally developed for independent data points (Spellman et al., 1998; Zhu,
et al., 2000). More recently, algorithms were developed to specifically address
this type of data. Different clustering methods specially designed for time se-
ries data have been recently proposed. Among these, clustering based on the
dynamics of the expression patterns (Ramoni et al., 2002), clustering using a
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hidden Markov model (Schliep et al., 2003), and clustering specifically devised
for short time series (Ernst et al., 2005) can be cited.

Once the clustering has been performed the following questions arise: Is
the partition obtained relevant? Is there a “better” partition involving more
or less clusters or a different distribution of the items within the clusters?
Since most of the clustering algorithms do not include any type of measure of
the reliability of the clusters obtained, these questions have to be addressed a
posteriori. There are different criteria to estimate the quality of the clustering
obtained (Kerr et al., 2001; Azuaje, 2002; Dudoit et al., 2003; Handl et al.,
2005) and some programs (e.g., the CAAT in GEPAS (Montaner et al., 2006))
offer the possibility of obtaining cluster quality indexes. Given that some
methods require that the number of clusters is predefined, (e.g., k-means or
self-organizing maps), the exact determination of the number of clusters in
the context of microarray data is a major concern, which has been specifically
addressed by different authors (Horimoto et al., 2001; Dudoit, et al., 2002;
Bolshakova et al., 2006).

But, why should we expect to find groups of co-expressed genes or a class
structure in our experiments? Genes do not operate alone in the cell, but in a
sophisticated network of interactions that we only recently start to decipher
(Rual et al., 2005; Stelzl et al., 2005; Hallikas et al., 2006). It has been a long
recognised fact that co-expressed genes tend to play some common roles in the
cell (Stuart et al., 2003; Lee et al., 2004). Ultimately, it is this common func-
tionality that we aim to understand when we face a clustering problem. Thus,
an important and non-negligible last step of any clustering analysis (and, in
general, of any DNA microarray experiment) is the functional interpretation
(Al-Shahrour and Dopazo, 2005b). There are a number of tools specially de-
signed to search for significant enrichment of biological terms — usually gene
ontology terms (Ashburner et al., 2000), but others can be used — in sets of
genes (Khatri et al., 2005). Typically, one set of genes is tested against the rest
of genes in the array. This set of genes can be, more precisely, a cluster of co-
expressed genes (Al-Shahrour, et al., 2004), and the result produced accounts
for the functional roles played by the genes in the cluster. There are different
tools that allow to easily link results of clustering methods to algorithms for
functional annotation, such as the GEPAS (Herrero et al., 2003; Herrero et
al., 2004; Vaquerizas et al., 2005; Montaner et al., 2006).

Recently, biological annotations (e.g., GO, KEGG pathways, etc.) have
been used for cluster validation (Bolshakova et al., 2005) and, even more
importantly, biological information (Huang et al., 2006; Pan, 2006) or pheno-
typic information (Jia et al., 2005) have been used as a constitutive part of
clustering algorithms.

Clusters can be obtained in numerous different ways. There are many dis-
tinct algorithms for measuring distances among genes and many procedures
for partitioning the data. In addition, most of the clustering methods do not
provide any measurement of the reliability of the results obtained. This ap-
parent diversity of ways for approaching the same problem, together with the
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lack of information on the reliability of the results obtained has attracted over
the clustering an undeserved reputation of subjective analysis strategy. Un-
derstanding the basis of the distance metrics and the partitioning procedures
and being aware of their limitations will provide the fundaments for a proper
and reasonable class discovery analysis.

6.2 Basic Concepts

Despite the large number of clustering methods and the new methods pro-
posed in the field of DNA microarray data analysis (Heyer, et al., 1999; Hastie
et al., 2000; Yeung et al., 2001a; De Smet, et al., 2002), only a subset of them
have been used with some regularity in this context. Among other merits, the
reason for the popularity of many methods of microarray data analysis, and
clustering is not an exception, resides in its availability in standard software
packages. Among the most commonly used methods we can cite hierarchical
clustering (Eisen et al., 1998), k-means (McQueen, 1967), self-organizing maps
(SOMs) (Kohonen, 1997) or self-orgainzing tree algorithm (SOTA) (Herrero
et al., 2001). Implicitly or explicitly, clustering methods depend on distances
between objects. Different ways of computing distances account for different
biological properties of the data. In this section I will review different distance
metrics, distinct clustering algorithms, different ways of estimating cluster
quality and algorithms for the functional annotation of clustering results.

6.2.1 Distance Metrics

In a widely accepted standard representation, microarray experiments are two-
dimensional matrices of gene expression values in which columns correspond
to genes and rows to experiments. Thus, the identification of genes with coor-
dinated expression across the experiments or, alternatively, the identification
of groups of experiments with similar expression values for all the genes is
achieved through the comparison of the column or row vectors, respectively,
by means of a distance function. The choice of such distance function depends
on the biological property that the researcher considers. There are two types of
distances extensively used in the comparison of expression profiles: Fuclidean
distance and Pearson coefficient of correlation.

Euclidean distance is obtained as the square root of the summation of the
squares of the differences between all pairs of corresponding gene expression
values (rows or columns). Euclidean distance computes the geometric distance
between two points in an n-dimensional space (n being the size of the vec-
tors — row or column — involved in the comparison). Thus, pairs of genes (or
experiments) whose components display similar magnitude of expression are
considered similar by this distance.

Although this property may be useful in some cases, it seems more rel-
evant, from a biological point of view, to search for genes (or experiments),
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whose expression profiles display a similar overall trend, irrespective of their
absolute values. The Pearson correlation coeflicient () measures this property.
It provides values between —1 (negative correlation) and 1 (positive correla-
tion). The more the two expression profiles display the same trend, the closer
to 1 is the r-value. This measure of similarity in the shapes of two profiles,
while not taking the magnitude of the profiles into account, suits well the
biological intuition of coexpression (Eisen et al., 1998). Euclidean distance
can be used for obtaining correlations if the data are properly transformed
(standardized, that is, subtracting the mean and dividing by the variance).
Then the Euclidean distance between two points x and y relates to correlation
as (x —y)? = 2(1 —|r|) (Alon et al., 1999).

Most of the distances found in the microarray-related literature are derived
from the Euclidean distance or from the correlation coefficient. Also some
non-parametrical distances have been applied, such as the Spearman rank
correlation (Kotlyar et al., 2002) or jackknifed correlation coefficient (Heyer
et al., 1999). (More distance metrics can be found in Chapter 7, Table 7.2).

However, there are other different scenarios beyond the simple coexpres-
sion whose exploration is of much interest from a biological point of view. A
very interesting property of the correlation coefficient is that it can be used
to detect negatively correlated expression profiles. The study of such negative
correlations can be very useful for identifying control processes that antago-
nistically regulate downstream pathways.

6.2.2 Clustering Methods

According to the final representation of the results, data can be clustered in
two different ways: In a hierarchical or in a non-hierarchical manner. Hierarchi-
cal clustering allows detecting higher-order relationships between clusters of
profiles whereas most of the non-hierarchical classification techniques allocate
profiles into a predefined number of clusters, without any assumption on the
inter-cluster relationships (see Figure 6.1a). Many authors prefer hierarchical
clustering because it allows to explore the entire hierarchy of relationships at
different levels. There are distinct clustering methods based on different ways
of aggregating data, which use (implicitly or explicitly) different distance func-
tions. Without the aim of producing an exhaustive enumeration of them, here
I will briefly review some of the most commonly used and most relevant clus-
tering methods. In a quick review of 1157 papers found in Pubmed using
“cluster and microarray” as keywords, I have found that 74% used hierarchi-
cal clustering, 15% used k-means, 6% used SOM, 2% used SOTA, another
2% used model-based clustering, and in the remaining cases other alterna-
tive methods were used. Although these figures can change depending on the
keywords used for finding the papers, they give an approximate idea on the
relative actual usage of each procedure.
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Fig. 6.1. Different clustering methods applied to cluster genes. a) Aggregative hi-
erarchical clustering, and b) SOTA with default parameters.

6.2.2.1 Aggregative Hierarchical Clustering

Aggregative hierarchical clustering (Eisen et al., 1998) is one of the preferred
choices for the analysis of patterns of gene expression (Quackenbush, 2001;
D’Haeseleer, 2005). Standard aggregative hierarchical clustering produces a
representation of the data with the topology of a binary tree, in which the
most similar patterns are clustered in a hierarchy of nested subsets (Sneath,
et al., 1973). Figure 6.1a shows a typical output of produced by the method.
In aggregative hierarchical clustering, each vector (gene or experiment) is ini-
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Fig. 6.2. Different clustering methods applied to cluster genes. a) k-means with
k =6, and (b) SOM with a 4 x 4 output map with hexagonal neighbourhood.

tially assigned to a single cluster; at each step, the distance between every pair
of clusters is calculated and the pair of clusters with the smallest distance is
merged; the procedure is iteratively carried on until all the data are grouped
into a single cluster. Depending on the way in which vectors are merged into
a cluster and the distance of the new cluster to the rest of items (also known
as linkage distance) is calculated, different variants of the method can be dis-
tinguished. This linkage distance can be calculated as the shortest distance of
any of the two joined members (single linkage), the largest distance (complete
linkage) or either weighted or unweighted averages (average linkage).

After the full tree is obtained, the determination of the final partition is
achieved by “cutting” the tree at a certain level or height, which is equivalent
to putting a threshold on the pairwise distance between clusters. Note that
the decision of the final partition is thus rather arbitrary.

6.2.2.2 k-Means

The k-means algorithm (McQueen, 1967) requires the specification of the
number of clusters, k, into which the objects are going to be partitioned.
Then the mean vector for each of the k clusters, the seed, is initialized either
by direct assignment (e.g., from the input) or by random generation (random
initial seeds). Then, the algorithm proceeds through an iterative procedure,
consisting of the following two steps: (1) Using the given mean vectors, the
algorithm assigns each gene (or experiment) to the cluster with the closest
mean vector. (2) The algorithm recalculates the mean vectors (which are the
sample means) for all the clusters. The iterative procedure ends when all the
mean vectors of the clusters remain constant or do not change significantly.
Figure 6.2a shows the output of the algorithm in a data set using k = 6.
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6.2.2.3 Self-Organizing Maps

Self-organizing maps (SOM) (Kohonen, 1997) are a technique to visualize
the high-dimensional input data (in our case, the gene expression data) onto
an (usually two-dimensional) output map of prototype vectors (also called
neurons) by a process known as self-organization. Similarly to k-means, the
dimension of the output map needs to be specified by the user. After initial-
izing the prototype vectors, the algorithm iteratively performs the following
steps. (1) Every input vector is associated with the closest prototype vector
of the output map, (2) the components of the prototype vector (and with less
intensity the prototype vectors in the neighbourhood) are updated accord-
ing to a weighted sum of all the input vectors that are assigned to it. This
process is repeated until the prototype vectors of the output node converged
to a constant value. During the clustering process the prototype vectors are
pulled towards the regions of the space that are more densely populated by
the input vectors. Figure 6.2b show a typical output of SOM using an output
map of 4 x 4 with an hexagonal neighbourhood.

6.2.2.4 Self-Organizing Tree Algorithm

The textitself-organizing tree algorithm (SOTA) (Dopazo et al., 1997; Her-
rero et al., 2001) is a different type of self-organizing neural network based
on the SOM, but implementing a binary tree topology, instead of the clas-
sical two-dimensional grid, and a different strategy of training. The iterative
procedure, with the application of the self-organization principle to the proto-
type vectors, is similar to the case of SOM. The differences reside in the fact
that the unique prototype vectors directly updated are the leaves of the tree
structure. The neighbourhood is defined through the tree topology. After con-
vergence of the network, the prototype vector containing the most variable
population of expression profiles (variation is defined here by the maximal
distance between two profiles that are associated with the same prototype
vector) is split into two sister vectors (causing the binary tree to grow), here-
after the entire process is restarted. The algorithm stops (i.e., the tree stops
growing) when a threshold of variability is reached for each prototype vector.
Hence, the number of clusters does not need to be specified in advance. The
determination of the threshold of variability involves the actual construction
of a randomised data set. In contrast to hierarchical clustering, which is an
aggregative method, the SOTA is divisive. Figure 6.1b shows an example of
clustering of genes obtained with SOTA.

6.2.2.5 Model-Based Clustering

Although model-based clustering has already been used in the past in other
fields, its application to microarray data is relatively recent (Yeung et al.,
2001a; Ghosh et al., 2002; McLachlan et al., 2002). In contrast to the clustering
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methods described so far, model-based methods provide a consistent statistical
framework for obtaining data partitions. The basic assumption in model-based
clustering is that the data are generated by a mixture of a finite number of
underlying probability distributions, where each distribution represents one
cluster. Model-based clustering methods face the problem of associating every
gene (or experiment) with the best underlying distribution in the mixture, and
at the same time, finding out the parameters for each of these distributions.
Different approximations can be used to infer these parameters. Gaussian
mixture models have been applied with success to microarray data clustering
(Yeung et al., 2001a). On the other hand, problems such as the estimation of
the number of clusters can be solved in a more efficient way using a Bayesian
framework (Vogl et al., 2005).

6.2.3 Biclustering

As previously mentioned, biclustering methods search for genes with coor-
dinated expression across a subset of experiments. While in the beginning
clustering algorithms were applied to both genes and experiments of the mi-
croarray matrix to reorganize data and thus visualize patterns common to
genes and experiments (Alon et al., 1999; Getz et al., 2000), soon algorithms
specifically designed for biclustering, such as the Samba, methods based on
graph theory (Tanay et al., 2002), the iterative signature algorithm (ISA) (Th-
mels et al., 2002) or mixtures of normal distributions (Lazzeroni and Owen,
2002) were proposed. Recently, model-based algorithms providing a more rig-
orous statistical framework have been proposed (Barash et al., 2002; Sheng et
al., 2003).

6.2.4 Validation Methods

As previously mentioned, validation of the relevance of the cluster results is
of paramount importance given that most clustering methods do not provide
any clue on reliability. Validation can be based on either external or internal
criteria. In the first case some gold standard is chosen and its agreement with
the partition obtained by the clustering method is taken as a support for such
a partition. Usually, biological information (gene ontology, pathways, etc.)
is used for this purpose (Tavazoie et al., 1999; Toronen, 2004; Al-Shahrour
and Dopazo, 2005b). Internal criteria for statistical cluster validation imply
the assessment of cluster coherence using different measures that compare
inter- to intra-cluster variability, such as silhouette coefficient (Rousseeuw,
1987), Dunn-like indices (Azuaje, 2002), connectedness or separation measures
(Handl et al., 2005). Another internal criterion consists of testing the stability
or the robustness of a cluster result when noise is deliberately added to the
data (Kerr and Churchill, 2001; Dudoit and Fridlyand, 2002).
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6.2.5 Functional Annotation

Clustering of microarray data produces a collection of objects (genes or ex-
periments) based on the comparison of their expression profiles but gives no
information on the functional basis for this grouping. While not much effort
has been developed on the way of understanding the molecular functional ba-
sis of clustering of experiments, there are however numerous papers dealing
with the issue in the case of clustering of genes. Ending up with a mere list
of genes of interest is only half-way to the result of a microarray experiment.
Apart from the utility that functional annotation can have as an external cri-
terion for cluster quality, it constitutes itself an unavoidable final step of any
microarray analysis. The proper interpretation of cluster analysis of microar-
ray experiments is usually performed in two steps: In a first step, clusters of
genes of interest are selected, and then the enrichment of any type of biolog-
ically relevant annotation for these genes is compared to the corresponding
distribution of this annotation in the background (typically, the rest of genes).
It is important to note that this comparison to the background is essential
because sometimes apparent high enrichment in a given annotation is nothing
but a reflect of a high proportion of this particular term in the whole genome
and, consequently, has nothing to do with the set of genes of interest. There
are different available tools, such as FatiGO (Al-Shahrour, et al., 2004) and
others (Khatri and Draghici, 2005), that estimate significant enrichment in
different functionally relevant annotation terms such as GO (Ashburner et
al., 2000), KEGG pathways (Kanehisa, et al., 2004), etc.

6.3 Advantages and Disadvantages

The methods and algorithms previously described have been developed for
situations and under assumptions that are not always fulfilled by DNA mi-
croarray data. In this section I will comment some of the positive and negative
features of the methods in the light of some of the most common problems in
clustering.

e Finding the proper number of clusters. In general, clustering meth-
ods do not define the proper number of clusters by themselves. k-means
and SOM need the pre-specification of the number of clusters. Different
strategies are used to circumvent this problem, but commonly different
runs of the program with different values of k (in k-means) need to be
evaluated with a quality cluster index to decide about the optimal number
of clusters. Nevertheless, this strategy is finally computationally expensive.
A similar problem affects some model-based procedures. In this case the
algorithm has to compare multiple log maximum likelihood values to opti-
mize the complexity of the model (Yeung et al., 2001a), or resampling the
data set (Yeung et al., 2001b). Both strategies are very time-consuming.



64

Joaquin Dopazo

On the other hand, model-based methods based on a Bayesian approach
can estimate the partition with the proper number of clusters (although
also at the expense of high run times). Besides, the SOTA method (Her-
rero et al., 2001) implements a quick permutation-based strategy that pro-
duces the partition at which the clusters contain elements with significant
intra-cluster distances (that is, distances that cannot be found in random
clusters).

Reliability of the clusters obtained. As mentioned above, the relia-
bility of clustering methods can be checked in different ways, based on
external information or on internal properties of the partition obtained.
There are several benchmarking studies that compare the relative efficien-
cies of different clustering methods in defining partitions in both artificial
data sets and in well-known real data sets (Gibbons et al., 2002; Datta
et al., 2003; D’"Haeseleer, 2005; Handl et al., 2005). As general conclusion,
hierarchical clustering with single linkage would not be a good choice,
because of its poor performance (Gibbons and Roth, 2002; D’Haeseleer,
2005). Depending on the study, hierarchical clustering with complete or
average linkage results in different performances: Sometimes one of the
linkage strategies seems to work better than the alternative and sometimes
not. In general, k-means, SOM and SOTA seem to exhibit a better perfor-
mance than hierarchical clustering (Gibbons and Roth, 2002; D’Haeseleer,
2005; Handl et al., 2005) according to different indexes such as silhouette,
Dunn, etc. It is important to note here that the performances reported for
k-means and SOM refer to an unrealistic situation in which the number of
clusters is provided to the method. This information is currently unknown
in real scenarios. Unfortunately, there are no benchmarking studies that in-
clude model-based clustering methods to date, and only a few performance
comparisons are available. Thus, for example, model-based Bayesian meth-
ods seem to perform better than k-means, even in situations in which the
number of clusters (k) was provided to the method (Vogl et al., 2005).
Reliability of biclustering. An interesting, although not exhaustive,
comparative study has recently been published (Prelic et al., 2006). Here,
the Samba (Tanay et al., 2002) and ISA (Ihmels et al., 2002) methods seem
to work reasonably well in the absence of noise, and a method proposed
by the authors, Bimaz, seems to outperform them in noisy situations.
Run times. Despite the advantages of model-based clustering methods
(they can estimate the reliability of the partition and some versions can es-
timate the number of clusters and impute missing values), their extremely
long run times (hours to days) and usually its requirement of powerful
computers for running, represent a limitation to its application to real sit-
uations. As a general rule, methods that use pair-wise distance matrices
(e.g., hierarchical clustering or k-means) have run times that are, at least,
quadratic on the number of items, while methods based on the distances of
the items to a number of clusters (e.g., SOM or SOTA) have almost linear
run times. Nevertheless, a data set with a number of features ranging from
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20,000 to 40,000 and a number of experiments ranging from 20 to 100 can
be a matter of seconds for SOM and SOTA, a few minutes for hierarchical
clustering and no more than 15 minutes for k-means.

e Interpretation of the results. As mentioned above, the functional an-
notation of the partition obtained can be used as an external criterion to
check the quality of the clustering obtained, but, at the same time it is cru-
cial for obtaining a proper annotation of the results obtained. Functional
annotation of clusters implies searching for enrichment of some functional
terms (typically GO, KEGG pathways, etc.) in them. One important con-
sideration in this step is the correction for multiple testing. For example,
there are around 14,000 GO terms; the possibility of finding apparent en-
richments in a few GO terms just by chance is high. To avoid obtaining
a considerable number of false positive enrichments different methods for
multiple testing adjustments can be used. Beyond the classical Bonfer-
roni or Holm’s corrections, which are extremely conservative, one of the
most popular choices are the false discovery rate (FDR), which in addi-
tion accounts for dependencies between the data (Benjamini et al., 1995;
Benjamini and Yekutieli, 2001). One of the first programs to incorporate
this correction was FatiGO (Al-Shahrour et al., 2004), although now it
is included in a number of systems (Onto-Express, GOStat, GOToolBox,
Gosurfer, etc.) Despite the importance of applying such corrections, there
are still programs, such as GoMiner, DAVID, eGOn, GOTM or CLENCH
that do not include it yet (Khatri and Draghici, 2005).

6.4 Caveats and Pitfalls

It is worth noting that many clustering methods produce partitions even with
random data. This is commonly known as the “garbage-in- garbage-out” ef-
fect in programming and points to the necessity of having some criteria in the
application of these methods. There are two potential weak points in any clus-
tering analysis: The distance function used and the algorithm for producing
the partition. The combined effect of both choices (sometimes restricted by
the clustering method) and the properties of the particular data set at hand
will make one of the methods more efficient compared to the alternatives.
Benchmarking studies, albeit not perfect, give an idea of the relative perfor-
mance of the different methods under different conditions, especially when
some of the conclusions are consistent across different, independent studies.
In the previous section some considerations have been made on the different
methods and a common conclusion was the poor performance of hierarchical
clustering when single linkage was used. While hierarchical clustering with av-
erage or complete linkage seems to work well, SOM, SOTA and k-means seem
to be superior according to internal indexes (Silhouette, Dunn, and other)
or external criteria (enrichment of functional terms). Model-based methods
(in particular Bayesian approaches) seem to show a superior performance, al-
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though runtimes are still excessive as to be considered feasible alternatives
on many computers. Beyond the advantages and disadvantages commented in
the previous section some considerations follow that deserve to be made.

6.4.1 On Distances

Usually, the distance metrics are computed with regard to the complete set
of genes represented on the array. Clustering can be done on the experiments
(based on all the genes) or on the genes (across all the experiments). It is not
uncommon that a given class of experiments (diseases, molecular subtypes,
etc.) is distinguished by a relatively few number of genes, whose effect may
end up diluted among the contributions of the rest of genes. This can lead
to the construction of groups based on irrelevant features unrelated to the
aim of the study. And this effect represents an even greater problem when
working with systems that cannot be under a strict experimental control, i.e.,
patients or samples directly collected from nature. In a classical paper, only
two types of diffuse large B-cell lymphoma could clearly be defined while some
subtypes were merged together in clusters not reflecting the clinical subtype
composition of the disease (Alizadeh et al., 2000). The only way described so
far to overcome this problem is via a biclustering approach. Similarly, typical
distances used in microarray assume that all the vector components used in
the computation are independent and this assumption clearly does not hold
in the case of time series, where all the experiments are autocorrelated. In this
case clustering methods specifically designed for time series should be used
(Ramoni et al., 2002; Schliep et al., 2003). Moreover, microarray time series
are short in comparison with typical time series in other disciplines (about
80% of microarray time series experiments involve only three to eight time
points (Ernst et al., 2006)), so clustering methods specifically developed for
this purpose should be used (Ernst et al., 2005).

6.4.2 On Clustering Methods

A significant problem associated with k-means or SOM algorithms is the ar-
bitrary choice of the number of clusters, since this information is commonly
not available in a real class-discovery problem. In practice, this makes it nec-
essary to use a trial-and-error approach where a comparison and validation
of several runs of the algorithm with different parameter settings are neces-
sary. A similar problem affects some versions of model-based methods, such as
Gaussian mixture models (Yeung et al., 2001a), but the strategies for finding
the number of clusters here (Yeung, et al., 2001a; Yeung et al., 2001b) are
enormously time-consuming.

Another parameter that will influence the result of k-means clustering is
the choice of the seeds. The algorithm is hampered by the problem of local
minima. This means that with different seeds, the algorithm can yield different
result. This problem also applies to SOM although to a lesser extent.
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Another inherent problem in SOM is that the training of the network
(and, consequently, the definition of clusters) depends on the number of items
assigned to each cluster. If irrelevant data (e.g., invariant, “flat” profiles) or
some particular type of profile is over-represented in the data, SOM will pro-
duce an output in which this type of data will populate the vast majority of
clusters. As a consequence, the most interesting profiles may appear in a few
clusters and the resolution obtained for them is poorer.

In contrast to SOM, the number of nodes does not need to be initialized in
SOTA. The partition obtained with SOTA is proportional to the heterogeneity
of the data, but not to the number of items in each cluster. Thus, SOTA is
quite insensitive to perturbing effects of big clusters on the global cluster
structure and can simultaneously resolve small and big clusters. Since SOTA
is a divisive method, a test can easily be coupled to the growing tree process
to decide at which point the growing of the tree should be stopped because
all the significant clusters have been found (Herrero et al., 2001).

6.5 Alternatives

Clustering has been extensively used over many years for different purposes
and consequently many clustering methods are available (Sneath and Sokal,
1973), so an exhaustive description of alternatives falls beyond the scope of
this chapter. In this chapter the clustering methods most commonly used
in the field of microarray data analysis have been described. Nevertheless,
other proposals have been made that, despite their potential, have not been
extensively used yet.

Early from an historical perspective in microarray data analysis, the QT-
Clust method was introduced (Heyer et al., 1999). This method considers each
expression profile in the data and determines how many of them are within the
distance specified as quality guarantee. The candidate cluster with the largest
number of expression profiles is selected as the output of the algorithm. Then,
the expression profiles of the selected cluster are removed, and the whole
procedure starts again to find the next cluster. The algorithm stops when the
number of profiles in the largest remaining cluster falls below a pre-specified
threshold.

Adaptive quality-based clustering (De Smet et al., 2002) uses a heuristic
two-step approach to find one cluster at a time. In the first step, a quality-
based approach is performed to locate a cluster centre in the area where the
density (i.e., the number) of gene expression profiles has a local maximum.
In the second step, the algorithm re-estimates the quality (i.e., the radius)
of the cluster so that the genes belonging to the cluster are, in a statistical
sense, significantly co-expressed. The cluster found is subsequently removed
from the data and the whole procedure is restarted. Only clusters whose size
exceeds a predefined number are reported in the output.
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Contrarily to aggregative hierarchical clustering, the divisive version of
this method provides a picture of the tree from lower to higher resolution,
as the construction of the tree proceeds. Apart from SOTA (Herrero et al.,
2001), other divisive hierarchical methods, e.g., based on the maximum en-
tropy principle (Alon et al., 1999), have been proposed. The algorithm tries
to find the most likely partition of data into sets and subsets, creating in this
way a binary tree structure.

Fuzzy versions of some clustering methods have also been applied to mi-
croarray data analysis (Dembele et al., 2003). The rationale behind the pro-
posal of the use of fuzzy methods is the difficulty of defining cluster boundaries
(Spellman et al., 1998). Fuzzy membership of genes should then be considered
more an operative procedure than a reality. Difficulties in the placement of
a gene in a cluster are due to noise and multifunctionality and can be best
addressed through biclustering methods.

Furthermore, other types of distances can be mentioned. There are dis-
tances that can deal with datasets containing large numbers of measures that
have a high degree of internal correlations. Correlations between experiments
or genes tend to produce elliptical clusters, which cause problems to methods
whose optimal performance occurs with compact, spherical clusters, such as k-
means. Distances that take into account covariance between experiments, like
the Mahalanobis distance (Mahalanobis, 1936), may be useful for datasets
with high internal correlation. The problems that originate from the com-
plex joint distribution of gene expression values, particularly their structure
of internal correlations and non-normality, have been addressed by other re-
searchers (Hunter et al., 2001), who argue that simple similarity metrics such
as FEuclidean distance or correlation similarity are suboptimal in microarray
datasets and propose the use of Bayesian approaches.

6.6 Case Study

Understanding the molecular roles played by potentially relevant genes in
a given experiment is still one of the most interesting objectives in many
microarray experiments. One of the most popular hypotheses in microarray
data analysis is that coexpression of genes across a series of experiments is
most probably explained through some common functional role (Eisen et al.,
1998). Actually, this causal relationship has been used to predict gene function
from patterns of co-expression (Stuart et al., 2003; Lee et al., 2004).

In this case study I use data from a genome-wide study to search for the fac-
tors responsible for the transcription of the cluster of co-ordinately expressed
ribosomal proteins of Saccharomyces cerevisiae (Rudra et al., 2005). This
dataset is publicly available at http://gepas.bioinfo.cipf.es/cgi-bin/
datasetsl There is a step that must be taken prior to any sort of microarray
data analysis: Normalization of the data. This step is beyond the scope of this
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Protein Structural constituent
biosynthesis of the ribosome
0.035 Not significant
0.033 0.039
0.0019 0.012 | —
0.0054 0.038
Not significant 0.12

Fig. 6.3. Clustering of gene expression profiles obtained with the SOTA method
(setting the variability threshold to 80%) and represented using the CAAT tool
(Montaner et al., 2006). The summarized description of the tree is obtained with the
CAAT tool, with the representation of the gene expression profiles (individual gene
profiles in grey and average profile in black) assigned to clusters and sub-clusters.
The upper branch is developed until no more partitions are produced by the SOTA
algorithm. Note how the confidence intervals for the average gene expression profile
become narrower as we move towards the terminal nodes. The arrow marks the level
at which the enrichment in the biological terms studied has a maximum significance.

chapter and aims to remove all the variability due to experimental manipu-
lation and unrelated to the actual experiment. (See Chapter 3 for details on
normalizing microarray data.) It can be carried out by using standard pro-
grams such as the DNMAD (Vaquerizas et al., 2004), SNOMAD (Colantuoni
et al., 2002) or other programs. With the goal of finding groups of genes that
co-express across the experiments, gene expression patterns were clustered us-
ing the SOTA algorithm (Herrero et al., 2001) as implemented in the GEPAS
(http://www.gepas.org) suite of web tools (Herrero et al., 2003; Herrero et
al., 2004; Vaquerizas et al., 2004; Montaner et al., 2006). Figure 6.3 shows a
general view of the SOTA hierarchical tree obtained, where the top branch is
shown in detail, and the terminal nodes (clusters as defined by SOTA) are at
the right end. The CAAT tool allows selecting clusters and automatically sub-
mitting them to the FatiGOplus tool (Al-Shahrour et al., 2004; Al-Shahrour,
et al., 2006) for functional analysis. When the upper terminal node is chosen,
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we found the GO terms “Protein biosynthesis” (FDR-adjusted p = 0.0054)
and “Structural constituent of the ribosome” (FDR-adjusted p = 0.0038) sig-
nificantly over-represented in the group of co-expressing genes contained in
the cluster, when compared to the rest of the tree. This operation can be
repeated for all the nodes of the tree and most of them will display significant
over-representation of GO terms. And, what is even more interesting, we can
examine internal nodes. If the internal nodes are sequentially analyzed along
the branch of a tree for the enrichment in biologically relevant terms it is
possible to find a level in the tree in which this enrichment is maximum (and
significant). In Figure 6.3, this level in the tree that maximizes the proportion
of genes annotated as “protein biosynthesis” and “structural constituent of
the ribosome” is marked by an arrow. Actually, it is the parent of the level at
which SOTA decides to stop growing. As we move from higher levels to lower
levels of the hierarchy we find clusters with tighter co-expression, which are
more likely involved in a common function. At this point, clustering based on
the distance measure has a natural, functional meaning. Beyond this point,
new partitions will not reflect a functional (biologically relevant) co-expression
(see the two last clusters in which the p-value increases or, in some cases is
non significant). Functional annotation can be considered an external cluster
quality measure.

6.7 Lessons Learned

The first and most important lesson is that clustering is for class discovery
(unsupervised analysis), but not for class discrimination or class prediction
(supervised analysis). Although this may sound obvious, there is still an ex-
tensive misuse of these techniques (Simon et al., 2003). Clustering of genes
and experiments can be carried out using exactly the same methods (applied
to columns or to rows, respectively). The final partition obtained is based on
equal contributions of each experiment (when clustering genes) or each gene
(when clustering experiments). It is worth remembering that many genes will
only introduce noise (because they represent physiological conditions or any
particularity of the sample, unrelated to the biological trait we have in mind)
and consequently, the partition obtained could be irrelevant from a biological
point of view. Not all the experiments are equivalent in terms of their analy-
sis. In addition to the inherent noise there are situations, such as time series
or dose-response experiments, in which the data display a high internal cor-
relation. These cases should be clustered with methods specifically designed
for them (Bar-Joseph, 2004). Finding a partition requires the correct estima-
tion of the number of clusters and its reliability. Only a few methods include
these features . Among them I can cite SOTA (Herrero et al., 2001) or recent
versions of model-based clustering (Vogl et al., 2005), although the latter is
too demanding in computational resources to constitute an alternative. Most
clustering methods require external strategies to find the optimal number of
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clusters and their reliability. This is nothing that should prevent one from
using a particular clustering method but must be taken into account. Just
trying with several k values for k-means and choosing the partition which
“looks nicer” can be a interesting exploratory exercise, but is definitively not
a proper way of obtaining a partition. Contrarily, irrespective of the final deci-
sion on the clustering method, SOTA, given its reliability (according internal
indexes and external criteria, see (Handl et al., 2005)) and speed, constitutes
a good choice for a first exploration of the data. With respect to the per-
formance of the different methods, recent comparative studies (Gibbons and
Roth, 2002; Datta and Datta, 2003; D’Haeseleer, 2005; Handl et al., 2005)
suggest that hierarchical clustering (with complete or average linkage), SOM
and k-means (if the number of clusters is known) and SOTA tend to produce
accurate partitions according to several cluster quality indexes. And last but
not least, clusters of co-expressing genes represent biological processed coop-
eratively carried out by the genes. A proper understanding of these processes
require of the application of methods that examine the biological roles jointly
carried out by the genes, that is, the functional annotation of the experiment
(Al-Shahrour and Dopazo, 2005b; Khatri and Draghici, 2005).

6.8 List of Tools and Resources

There are different tools available and several repositories containing tools
for the analysis of microarray data. The list below does not intend to be
an exhaustive catalogue of these resources but contains some of the most
complete and stable ones.

6.8.1 General Resources

http://www.nslij-genetics.org/microarray/soft.html.
http://ihome.cuhk.edu.hk/|
http://bioinformatics.ubc.ca/resources/.

6.8.1.1 Multiple Purpose Tools (Including Clustering)

e GEPAS: A web-based resource for microarray gene expression data analy-
sis (Herrero et al., 2003; Herrero et al., 2004; Vaquerizas et al., 2005;
Montaner et al., 2006) which beyond clustering offers many more tools
(normalisation, gene selection, predictors, functional annotation, Array-
CGH, etc.) http://www.gepas.org.

e INCLUSive: A web portal for clustering and regulatory sequence analysis
(Coessens et al., 2003) http://www.esat.kuleuven.ac.be/inclusive.

e [Expression Profiler is a web based platform for microarray data analysis
developed at the EBI. (Kapushesky et al., 2004). http://www.ebi.ac.
uk/expressionprofiler.
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6.8.2 Clustering Tools

e http://homes.esat.kuleuven.be/~thijs/Work/Clustering.html: Adap-

tive Quality-Based Clustering (De Smet et al., 2002).

e http://www.ii.uib.no/~bjarted/jexpress/index.html: J-EXPRESS:
University of Bergen, Norway.

e http://rana.lbl.gov/EisenSoftware.htm: CLUSTER, TREEVIEW:
Eisen’s lab at Lawrence Berkeley National Laboratory.

e http://www.genome.wi.mit.edu/MPR/software.html: GENE-CLUSTER:
Whitehead Institute.

e http://gepas.bioinfo.cipf.es/cgi-bin/sotarray: SOTA (Herrero et
al., 2001): CIPF, Spain. Also included in GEPAS.

6.8.3 Biclustering Tools

There are not many biclustering tools available yet. The coupled two-way
analysis (Getz et al., 2000) is a simple method available at http://ctwc.
weizmann.ac.il/l Also, GEMS (Wu et al., 2005) is a nice example of a
web-based tool for biclustering (available at http://genomics10.bu.edu/
terrence/gems/).

6.8.4 Time Series

Time series (and dose-response) experiments are characterized by displaying
a strong autocorrelation between successive points (Bar-Joseph, 2004) and
must, consequently, be analysed with algorithms that specifically take into
account this fact. The algorithm STEM has been, in addition, designed for
short time series and can be found at http://www.cs.cmu.edu/~jernst/
stem.

6.8.5 Public-Domain Statistical Packages and Other Tools

Probably, the most popular resource for microarray data analysis is bioconduc-
tor (Gentleman et al., 2004). It is written in the popular R statistical program-
ming language and offers many modules for the analysis of microarray data.
It is available at http://www.bioconductor.org. The BRB tools, developed
by the Richard Simon and Amy Peng Lam group, offer a variety of useful al-
gorithms. Available at: http://linus.nci.nih.gov/BRB-ArrayTools.htmll
Additionally, there are packages in Java, which are very popular, as is the
case of MEV (http://www.tigr.org/software/microarray.shtml) (Saeed
et al., 2003). Java packages provide an interactive and convenient interface
and can run on multiple platforms, constituting an interesting alternative to
web-based tools, which cannot offer the same degree of interactivity. The only
limitation comes from the characteristics of the local computer in which the
program is installed (which can be an obstacle in a non-negligible number of
cases).
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6.8.6 Functional Analysis Tools

e Babelomics (Al-Shahrour et al., 2005¢; Al-Shahrour et al., 2006) is a suite
of web tools for the functional annotation and analysis of groups of genes
in high throughput experiments. Tools include: FatiGO (Al-Shahrour et
al., 2004), FatiGOplus, Fatiscan (Al-Shahrour et al., 2005a), Gene Set
Enrichment Analysis (GSEA) (Subramanian et al., 2005), Marmite, and
the Tissues Mining Tool (TMT). http://www.babelomics.org.

e goCluster simultaneously implements annotation information, clustering
algorithms and visualization tools for microarray data analysis (Wrobel
et al., 2005). Available at: http://www.bioconductor.org; http://www.
bioz.unibas.ch/gocluster.

6.9 Conclusions

Clustering is essential for finding either (functionally related) co-expressed
genes or subtypes of experiments based on their gene expression profiles. Al-
though clustering of genes and experiments can be carried out using exactly
the same methods, the final result obtained is based on equal contributions
of each data component. Thus, it is worth noting that in the case of clus-
tering of experiments many genes will only introduce noise and consequently
the resulting partition can be meaningless from a biological point of view. In
addition to noise, some experiments are conceptually different. Time series or
dose-response experiments, for example, are characterized by the existence of a
high internal correlation between consecutive experiments. These experiments
must be clustered with methods specifically designed for them (Bar-Joseph,
2004). Regarding the comparative performances of the methods, hierarchical
clustering (except in the case of single linkage), SOM and k-means (provided
the number of clusters is known) and SOTA seem to produce reliable parti-
tions (Gibbons and Roth, 2002; Datta and Datta, 2003; D’Haeseleer, 2005;
Handl et al., 2005). Finally, methods that examine the enrichment in biolog-
ically relevant terms (Al-Shahrour and Dopazo, 2005b; Khatri and Draghici,
2005) are necessary for a proper understanding of the biological processes
cooperatively carried out by the genes present in co-expression clusters .
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