

Introduction

 ${\sf SAMStat}$

 ${\sf QualiMap}$

Introduction

SAMStat

QualiMap

Where are we?

Why QC on mapped sequences

Acknowledgment: Fernando García Alcalde

- ► The reads may look OK in QC analyses of raw reads but some issues only show up once the reads are aligned: low coverage, homopolymer biases, experimental artifacts, etc.
- These unwanted biases can be introduced by the selected:
 - Sample extraction process
 - Sequencing technology
 - Sample preparation protocol
 - Mapping algorithm

Why QC on mapped sequences

- ► SAM/BAM files usually contain information from tens to hundreds of millions of reads
- ► The **systematic detection** of such biases is a **non-trivial** task that is **crucial** to to drive appropriate downstream analyses.
- Look for big biases that really affect the analysis
- Difficult to provide guidelines: general trends

Introduction

SAMStat

QualiMap

Features

- Facilitates the indentification of sequencing error biases that may disturb the mapping process
- Provides a concise html page with statistics that highlight problems in the data processing:
 - Reads with an excesive proportion of mapping errors
 - Reads containing contaminants
 - Reads representing novel splice junctions/genomic regions
 - **...**
- Easy-to-use command-line tool freely downloadable at:

http://samstat.sourceforge.net

Timo Lassmann, Yoshihide Hayashizaki, and Carsten O. Daub. SAMStat: monitoring biases in next generation sequencing data Bioinformatics (2011) 27(1): 130-131

Running SAMStat

- ▶ Input: a BAM/SAM file (other sequence files are also accepted such as fasta or fastq)
- Output: an html report

Run SAMStat with a .bam example

samstat /home/biouser/mda13/mqc-igv/test1.bam

► The html report will be saved at /home/biouser/mda13/mqc-igv/test1.bam.html. Use a web browser (e.g. Firefox) to open it

Concepts

- Mapping quality: an integer in [0,254] representing -10 ⋅ log₁₀ P(mapping error)
- Calculated as a function of the quality of the read, and a score that indicates how well the read is aligned
- Algorithm-specific
- ► The higher it is, the better the alignment. (MAPQ = $30 \implies 0.001$ error rate)
- ▶ 255 indicates that the mapping quality is not available.

Number of aligned reads and mapping quality

- Proportion of reads mapped in each mapping quality range.
- ▶ The "red part" should fill most of the pie chart area

Number of aligned reads and mapping quality

- Proportion of reads mapped in each mapping quality range.
- ▶ The "red part" should fill most of the pie chart area
- ▶ WARNING: The appearance of a 0% of unmapped reads does not necessarily mean that there all the raw reads were aligned.

Number of aligned reads and mapping quality

- Proportion of reads mapped in each mapping quality range.
- ▶ The "red part" should fill most of the pie chart area
- WARNING: The appearance of a 0% of unmapped reads does not necessarily mean that there all the raw reads were aligned.
- ► Why?

Mean base quality

- Mean quality per read base in each mapping quality range
- ► Higher the base quality ⇒ higher mapping quality expected.

Mean base quality

- Mean quality per read base in each mapping quality range
- ▶ Higher the base quality ⇒ higher mapping quality expected.

Error profiles

- ► Number of mismatches at each read position, segregated by the nucleotide causing the mismatch
- Should be more or less stable across read positions
- More errors are expected at the end of the reads since base qualities tend to be lower at that positions
- Nucleotide peaks at different positions may indicate experimental artifacts that disturb read mapping

Over-represented di-nucleotides

- ▶ Over-representation scores for each possible di-nucleotide at each read position.
- ► Significant socores (p-value <= 1e-100) appear in bold
- Over-represented di-nucleotides may indicate experimental artifacts that disturb read mapping

Over-represented di-nucleotides

- ▶ Over-representation scores for each possible di-nucleotide at each read position.
- ► Significant socores (p-value <= 1e-100) appear in bold
- Over-represented di-nucleotides may indicate experimental artifacts that disturb read mapping

Error distribution

- Distribution of the number of errors (mismatches and indels) per read, segregated by mapping quality ranges
- No more than ~ 2 mismatches should be allowed for short $(\sim 75b)$ reads

Nucleotide composition

- ► Number of As,Cs,Gs and Ts appearing at each read position and segregated by mapping quality
- ► The counts and proportions should be almost invariant accross read positions

Nucleotide composition

- ► Number of As,Cs,Gs and Ts appearing at each read position and segregated by mapping quality
- The counts and proportions should be almost invariant accross read positions

Length distribution

Distribution of the number of bases per read

Top 5 over-represented 2-mers

► Summary of the "Over-represented di-nucleotides", including the top-5 2-mers in each position

Top 5 over-represented 2-mers

 Summary of the "Over-represented di-nucleotides", including the top-5 2-mers in each position

Top 20 over-represented 10-mers

► The 20 most significant 10-mers per quality level

More on SAMStat

Hands-on

Run SAMstat on /home/biouser/mda13/mqc-igv/test2.bam and /home/biouser/mda13/mqc-igv/test3.bam

Interpret the results

Introduction

SAMSta

QualiMap

Qualimap

Aim

Provide an overall view of the data that helps to the detect biases in the sequencing and/or mapping of the data

Run QualiMap

qualimap

- ▶ BAM file needs to be sorted: samtools sort <filename> <fileout>
- ► File \rightarrow New analysis \rightarrow BAM/SAM file \rightarrow /home/biouser/mda13/mqc-igv/HG00096.chrom20.bam

García-Alcalde, et al. Qualimap: evaluating next generation sequencing alignment data. Bioinformatics(2012) 28

(20): 2678-2679

GRPA Geomis & Bortom

Features

- Fast analysis accross the reference of genome coverage and nucleotide distribution
- ► Easy to interpret summary of the main properties of the alignment data
- Analysis of the reads mapped inside/outside of the regions provided in GFF format
- Insert size mean and median value calculation and plotting statistical distribution
- Analysis of the adequasy of the sequencing depth in RNA-seq experiments
- Clustering of epigenomic profiles

Hands on

- Open the online help
- ► Go through the examples
- Run qualimap over /home/biouser/mda13/mqc-igv/igv1.bam (with and without reference annotation http://reports.bioinfomgp.org/external-downloads/chr21.gtf)
- Run qualimap in the previous data (with and without reference annotation http://reports.bioinfomgp.org/externaldownloads/refseqgenes.gtf)
- Have a look at http://reports.bioinfomgp.org/externaldownloads/fullbam/qualimapReport.html
- Drive conclusions from what you get
- ▶ BONUS: Run qualimap via de command line

Introduction

SAMStat

QualiMap

Conclusions

▶ One should always perform QC on the mapped data

- One should always perform QC on the mapped data
- ▶ The correct interpretation of the QC output may save a lot of time (and money) on downstream analyses

- One should always perform QC on the mapped data
- ► The correct interpretation of the QC output may save a lot of time (and money) on downstream analyses
- ► The expected results are experiment-specific ⇒ Learn from experience

