Application of NGS to Transcriptomics

Fernando García Alcalde

Department of Bioinformatics and Genomics Centro de Investigación Príncipe Felipe, Valencia, Spain

> PRINCIPE FELIPE CENTRO DE INVESTIGACION

International Course on MASSIVE Data Analysis Valencia, March, 2011

Acknolowegdments

Sonia Tarazona

Pablo Escobar

José Carbonell

Ana Conesa

Outline

2 RNA-Seq Data Mapping

Introduction

RNA-Seq Data Mapping RNA-Seq Data Analysis Basic Biology From Microarrays to RNA-Seq RNA-Seq

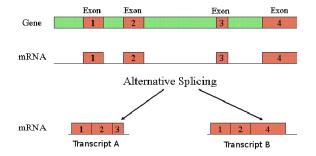
Outline

- Basic Biology
- From Microarrays to RNA-Seq
- RNA-Seq

Introduction

RNA-Seq Data Mapping RNA-Seq Data Analysis Basic Biology From Microarrays to RNA-Seq RNA-Seq

Inicial Concepts


Definitions

- Gene: a hereditary DNA sequence that determines a particular characteristic in an organism.
- Exon: a region of a gene that codes information for protein synthesis that is transcribed to mRNA.
- Intron: a region of a gene which is not translated into protein and is removed before translation of mRNA.
- Splicing: a process in which the introns are removed and exons are joined to be translated into a single transcript.

Basic Biology From Microarrays to RNA-Seq RNA-Seq

Alternative Splicing

Alternative splicing: process in which exons can be spliced out in different combinations named transcripts to generate the mature RNA molecule.

Basic Biology From Microarrays to RNA-Seq RNA-Seq

Microarrays

Features

- Allow measuring the abundance of thousands of DNA and RNA sequences simultaneously in different cell samples.
- Make use of the hibridatory properties of the nucleic acids to observe their abundance.
- Probes: Short (known) DNA sequences fixed in the array.
- Targets: DNA sample that one wants to monitorize.
- The abundance of each sequence is a function of the fluorescence level recovered after the hybridization process.

Basic Biology From Microarrays to RNA-Seq RNA-Seq

Hight-throughput sequencing

Brief Summary

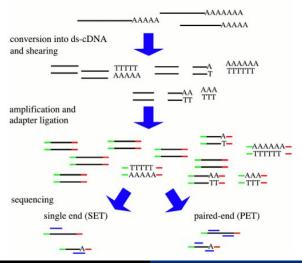
- Improvements in the efficiency, quality and cost of genemo-wide sequencing have made biologist to abandon microarrays in favor of so-called next-generation sequencing (NGS)
- Plataforms: SOLiD, Illumina, Roche's 454, HeliScope
- Allow to obtain *digital* measures for the secuence abundances (read counts)

Basic Biology From Microarrays to RNA-Seq RNA-Sea

Pros / Cons

Microarrays

Pros	Pros
 Price Well-established protocols Wide computational analysis tools accessible. 	 Potential for the discovery of novel / not annotated regions Discrete measure of abundance (read counts)
Cons	 Improved quality and versatility of the data
Limited to known	
genomes/transcriptomes.	Cons
 Limited sensitivity 	• Dependence in the sequencing depth
 Problems in the hybridization (e.g. cross-hybridization, affinity effects,) 	 Price Complex data processing and analysis

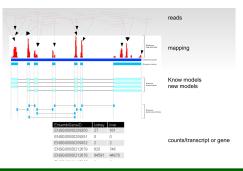

Specific designs for each particular problem

- Complex data processing and analysis
- Lack of a well-defined benchmark

Basic Biology From Microarrays to RNA-Seq RNA-Seq

RNA-Seq. General Protocol

extraction of poly-A RNAs



Fernando García Application of NGS to Transcriptomics

Introduction

RNA-Seq Data Mapping RNA-Seq Data Analysis Basic Biology From Microarrays to RNA-Seq RNA-Seq

RNA-Seq. Schema

General Objectives

- Quantify transcript abundances
- Identify gene transcriptional structure: splicing, 5' and 3' sites, etc
- Quantify expression level changes in each transcript

Basic Biology From Microarrays to RNA-Seq RNA-Seq

RNA-Seq. Data

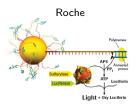
Raw Data

Reads from the sequencer (sequences + qualities)

Formats

- FASTQ \implies nucleotides
- Colorspace \implies colors for each change

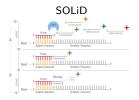
Basic Features


- Single-end / Parired-end
- Length: 35bp, 50bp, 75bp, 400bp,....
- Strand specificity
- Quality
- Depth => Tipically 10 millions per lane (growing)

Introduction RNA-Seq Data Mapping

RNA-Seq Data Analysis

Basic Biology From Microarrays to RNA-Seq RNA-Seq


Platforms

- "Long reads" (400nts)
- Good for de novo
- Errors: Poly-n's

- Reads 35-150nts
- Paired-end
- Errores: hexámeros

- Reads 50-100nts
- Strand specific
- Colorspace

Before we start Background TopHat

Índice

2 RNA-Seq Data Mapping

- Before we start
- Background
- TopHat

Before we start Background TopHat

What do we have?

Sequencer Output

- Obtained sequence (read) \rightarrow Different techniques and protocols
- Estimated quality \rightarrow Sequencer calibration

Main Problem

VERY big files \rightarrow How can we have an idea of what is in them?

Related problems

- Detect wrong reads
- What to do with the wrong ones (trimming, removing, ...)
- Take into account specific problems of each platform

Before we start Background TopHat

Read Quality

Before we start Background TopHat

FastQC

- Covered in the previous class
- Software for the sequencing quality control
- Very useful to get an quick idea of the quality of the data and where problems can be expected

Ejemplos

 Datos OK: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/good_sequence_short_fastqc/fastqc_report.html

Datos with problems: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/bad_sequence_fastqc/fastqc_report.html

Before we start Background TopHat

RNA-Seq. Mapping

Main Issues

- Number of allowed mismatches
- Number of multi-hits
- Distance between pairs
- Consider exon junctions

Before we start Background TopHat

Mapping Algorithms

BWA

- Short reads up to 200bp with error < 5%
- Do not account for read quality
- Gapped alignment

Bowtie

- Very fast for short reads
- Does not align with gaps
- Use the read quality to evaluate the alignment

Tophat

Improved Bowtie with gap alignment

Other

ELAND (Illumina software), SOAP, MAQ, etc.

Before we start Background TopHat

SAM format

SAM file	e example		
	Header 🧲	@HD VN:1.0 @SQ SN:chr20 LN:62435964 @RG ID:L1 PU:SC_1_10 LB:SC_1 SM:NA12891 @RG ID:L2 PU:SC_2_12 LB:SC_2 SM:NA12891	
	Alignment –	read_28833_29006_6945 99 chr20 28833 20 10M1D25M = 28993 195 AGCTTAGCTACCTACTATATCTTGGTCTTGGCCG <<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>	\ \

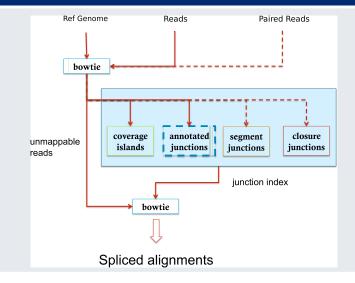
Before we start Background TopHat

SAM Format

Information about the alignment

Alignment section			Strand; Paired-end; et al.	
2	FLAG	bitwise Fl Reference]
4	POS	1-based le	Map position	ipped sequence
5 6	MAPQ CIGAR	MAPping extended	CICAD Adva]]
7	MRNM	Mate Refe	Indels; Junctions;	e as RNAME)
8 9	MPOS	1-based N Inferred i	et al	
10	SEQ	query SEC	uence on the same strand as the	reference
11	QUAL	query QU		se quality)
12	OPT	variable (Read sequence &	VTYPE:VALUE
			base qualities	

Before we start Background TopHat


Tophat (http://tophat.cbcb.umd.edu/)

Features

- Align the sequences against the genome AND the exon unions (with/without reference)
- Uses Bowtie, an ultrafasr aligner with low memory consumption
- Align segments (25bp by default) of each read, allowing up to 2 mismatches (by default)
- Recent support for colorspace
- It does not consider indels
- Highly configurable
- $\bullet\,$ Continous improvement of the software \rightarrow good but... Caution! New bugs sometimes

Before we start Background TopHat

Tophat. Schema

Before we start Background TopHat

Tophat. Example

Input data \rightarrow rawReads1.fastq, rawReads2.fastq

rawReads1.fastq:

1000 reads 50 % gene ARHGAP5 (two exons) and 50 % gene CMA1 (two exons)

Before we start Background TopHat

Tophat. Example

Input data \rightarrow rawReads1.fastq, rawReads2.fastq

rawReads1.fastq:

1000 reads 50 % gene ARHGAP5 (two exons) and 50 % gene CMA1 (two exons)

rawReads2.fastq:

500 reads 20% gene ARHGAP5 (two exons) and 80% gene APEX1 (three exons)

Before we start Background TopHat

Tophat. Example

Input data \rightarrow rawReads1.fastq, rawReads2.fastq

rawReads1.fastq:

1000 reads 50 % gene ARHGAP5 (two exons) and 50 % gene CMA1 (two exons)

rawReads2.fastq:

500 reads 20% gene ARHGAP5 (two exons) and 80% gene APEX1 (three exons)

 ${\tt Reference} \rightarrow {\tt HS_chr14.*}$

Homo sapiens, chromosome 14 (pre-indexed)

Before we start Background TopHat

Tophat. Example

Input data \rightarrow rawReads1.fastq, rawReads2.fastq

rawReads1.fastq:

1000 reads 50 % gene ARHGAP5 (two exons) and 50 % gene CMA1 (two exons)

rawReads2.fastq:

500 reads 20% gene ARHGAP5 (two exons) and 80% gene APEX1 (three exons)

${\tt Reference} \rightarrow {\tt HS_chr14.*}$

Homo sapiens, chromosome 14 (pre-indexed)

Command

- I cd /home/biouser/rnaseq
- 2 mkdir results
- 6 tophat -o /home/biouser/rnaseq/results/exp1/ -p 1 /home/biouser/rnaseq/data/HS.chr14 /home/biouser/rnaseq/data/rawReads1.fastq

tophat -o /home/biouser/rnaseq/results/exp2/ -p 1 /home/biouser/rnaseq/data/HS.chr14 /home/biouser/rnaseq/data/rawReads2.fastq

Before we start Background TopHat

Tophat. Exercices

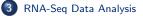
Alignments

- Examinate and understand the generated SAM files (accepted_hits.sam)
- Load the SAM files with IGV and observe the alignment Hint: Look for the regions of interest

Junctions

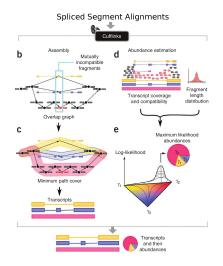
 Observe and understand the generated BED files (junctions.bed) Hint: http://genome.ucsc.edu/FAQ/FAQformat.html#format1

BONUS


- Which are the genomic coordinates of the junctions?
- Can you explain the situation for the CMA1 gene?

Transcript Reconstruction Counting Regions of Interest Final Exercise

Outline



- Transcript Reconstruction
- Counting Regions of Interest
- Final Exercise

Transcript Reconstruction Counting Regions of Interest Final Exercise

$Cufflinks \rightarrow http://cufflinks.cbcb.umd.edu/$

- Not restricted to a previous annotation
- Accounts for alternative splicing
- Receives a set of mapped reads (SAM/BAM)
- Detects compatible fragments and search for a parsimonous explanation

Transcript Reconstruction Counting Regions of Interest Final Exercise

Cufflinks. Example

Exercise

Assembly the transcripts found in the previous alignment

Transcript Reconstruction Counting Regions of Interest Final Exercise

Cufflinks. Example

Exercise

Assembly the transcripts found in the previous alignment

Commands

From /home/biouser/rnaseq/results/exp1/ and /home/biouser/rnaseq/results/exp2/:

cufflinks -p 1 accepted_hits.sam

Transcript Reconstruction Counting Regions of Interest Final Exercise

Cufflinks. Example

Exercise

Assembly the transcripts found in the previous alignment

Commands

From /home/biouser/rnaseq/results/exp1/ and /home/biouser/rnaseq/results/exp2/:

cufflinks -p 1 accepted_hits.sam

Question

Were the transcripts reconstructed as you expected?

Hints:

Observe the transcripts.gtf files GTF definition: http://genome.ucsc.edu/FAQ/FAQformat.html#format3 Finding the actual transcripts in *ensembl* might help

Transcript Reconstruction Counting Regions of Interest Final Exercise

Comparing Experiments \rightarrow cuffcompare

Exercise

cuffcompare cufflinks application for comparing results from different experiments

Compare the outputs obtained in the previous experiment

Transcript Reconstruction Counting Regions of Interest Final Exercise

Comparing Experiments \rightarrow cuffcompare

Exercise

cuffcompare cufflinks application for comparing results from different experiments

Compare the outputs obtained in the previous experiment

Commands

Create /home/biouser/rnaseq/results/compare/ and from there:

Transcript Reconstruction Counting Regions of Interest Final Exercise

Comparing Experiments \rightarrow cuffcompare

Exercise

cuffcompare cufflinks application for comparing results from different experiments

Compare the outputs obtained in the previous experiment

Commands

Create /home/biouser/rnaseq/results/compare/ and from there:

Questions

- How many transcripts in total? Why? Hint: Observe the file stdout.combined.gtf
- Can you identify the specific transcripts of each experiment? Hint: Observe the file stdout.tracking

Transcript Reconstruction Counting Regions of Interest Final Exercise

Counting Regions of Interest \rightarrow htseq-count

htseq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html)

htseq-count: Receives an alignment file (SAM/BAM) and a list of genomics features (p.ej. GTF) Returns the number of reads that fall within the selected feature

Transcript Reconstruction Counting Regions of Interest Final Exercise

Counting Regions of Interest \rightarrow htseq-count

htseq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html)

htseq-count: Receives an alignment file (SAM/BAM) and a list of genomics features (p.ej. GTF) Returns the number of reads that fall within the selected feature

Exercise

Compute the counts at the gene level for the previous experiments

Transcript Reconstruction Counting Regions of Interest Final Exercise

Counting Regions of Interest \rightarrow htseq-count

htseq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html)

htseq-count: Receives an alignment file (SAM/BAM) and a list of genomics features (p.ej. GTF) Returns the number of reads that fall within the selected feature

Exercise

Compute the counts at the gene level for the previous experiments

Commands

From /home/biouser/rnaseq/results/exp1/ and /home/biouser/rnaseq/results/exp2/:

htseq-count -s no -i gene_name accepted_hits.sam
/home/biouser/rnaseq/data/HS.chr14.gtf > counts.txt

Transcript Reconstruction Counting Regions of Interest Final Exercise

Counting Regions of Interest \rightarrow htseq-count

htseq-count (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html)

htseq-count: Receives an alignment file (SAM/BAM) and a list of genomics features (p.ej. GTF) Returns the number of reads that fall within the selected feature

Exercise

Compute the counts at the gene level for the previous experiments

Commands

From /home/biouser/rnaseq/results/exp1/ and /home/biouser/rnaseq/results/exp2/:

htseq-count -s no -i gene_name accepted_hits.sam
/home/biouser/rnaseq/data/HS.chr14.gtf > counts.txt

Questions

- How many reads has each gene in each experiment
- Does it matches with what you expected? Can you explain it? Hint: Think of the effects of the transcript length and the sequencing depth

Transcript Reconstruction Counting Regions of Interest Final Exercise

BONUS

RPKM

Compute the RPKM (Reads per kilobase per million reads) value for a gene in a given experiment and compare your results with those obtained by cufflinks

 $\textit{RPKM} = \frac{\textit{number of reads of the region}}{\frac{\textit{total reads}}{100000} \times \frac{\textit{region length}}{1000}}$

Transcript Reconstruction Counting Regions of Interest Final Exercise

Real problem

Objective

Use what you have learnt in a real dataset

Data

Two real sequencing experiments (reduced due to memory issues):

- brain.fastq
- uhr.fastq

Hints

- Reference genome: hg19.*
- Annotation: hg19.gtf
- Examine the problem and follow the previously used pipeline
- Ask if you find yourself lost