Introduction to NGS technologies

Joaquín Panadero Romero

29th February 2016

GDA
International Course on
Genomic Data Analysis

OUTLINE

- 1. Basics on the NGS technologies
- 2. Comparisons across NGS platforms
- 3. Computing infrastructure for NGS analyses
- 4. Tools for data analysis

Basic on NGS technologies

Millions of DNA molecules sequenced simultanously

Types:

Sanger
Pyrosequencing
Sequencing by synthesis
Sequencing by ligation
Ion-Semiconductor sequencing

SANGER

Used nowadays in:

- Routine sequencing applications
- NGS data validation

Multiple DNA fragments covering each base position

SANGER

DNA fragments move according their size

Light detected shows the base added at each position

Common among NGS technologies

1. sample preparation

cDNA fragments ligated to adaptors at both ends

Amplification based on PCR bridges or bead emulsion

2. sequencing machine

3. data output

Sequencing output is provided in clusters

Pyrosequencing

Overview

- Large reads lengths generation
- High reagent cost
- High error rate over strings of 6+ homopolymers

Sequencing by synthesis

Overview

- Overcomes homopolymer issue due to terminated nucleotides
- Increased error rate with increased read lengths

Sequencing by ligation

Sequencing by ligation

5 x 7 ligation cicles. Each primer hibridizes one base back

Overview

- Oligonucleotide probes used rather than DNA Polymerase
- Very short read lengths

Ion - Semiconductor sequencing

Beads are attached to semiconductor transistors

Each time a nucleotide is added, one H+ is released

Semiconductor transistor detects changes on PH solution

Ion - Semiconductor sequencing

Overview

- Similar to pyrosequencing, but measures the release of H+ instead of pyrophosphate
- Most cost effective and time efficient

Examples of NGS systems

NGS comparison

Coverage of genome per run		_	of	4
Pyrosequencing	0	0	5	151
Sequencing by synthesis	455	536	11k	323k
Sequencing by ligation	97	114	2k	69k
lon semiconductor sequencing	3	4	74	2k

Applications

- Whole genome sequencing
- Variant Calling
- RNA-seq
- De novo sequencing and assembly
- Chip-seq
- Methyl-seq
- Metagenomics

Sequencing costs

Full Genome Sequencing & The Genetic Revolution

Cost per Human Genome vs Total Number of Genomes Sequenced

Sequencing costs

- In NGS we have to process really big amounts of data, which is not trivial in computing terms
- Big NGS projects require supercomputing infrastructures

thus

we can tackle such amount of data by using specific hardware combined with software capable to deal with data generated

Computational infrastructure for NGS

Requirements:

- Conditioned data center (server rooms)
- Computing cluster (racks)
- Many computing nodes (servers)
- High performance and high capacity storage
- Fast networks (10Gb ethernet, infiniband...)
- Skilled people in computing (sysadmins and developers)

Computing cluster and storage

Distributed memory cluster

8 or 12 cores per node At least 48GB RAM per node

Fast networks 10 Gbit, infiniband...

Batch queue system sge, slurm, condor, pbs

What do we want to storage?

Raw data (fastq)
Processed data (fastq, bam, sam, vcf)
Final results (txt, excel...)

How many storage resources? For how long?

CNAG Centro Nacional Analisis Genómico

Sequencing instruments

- 10 Illumina HiSeq2000

Informatics infrastructure

- -850 core cluster
- 7.5 petabytes, lustre filesystem 10 x 10 Gb link with MareNostrum

BGI Beijing Genomics Institute

Sequencing instruments

- Illumina HiSeq
- AB Solid System
- Ion Torrent

Informatics infrastructure

- 20576 cores cluster
- 17 PB (petabytes)

Alternatives: cloud computing

Pros

- flexibility
- you pay what you usedon't need to mantain a data center

Cons

- transfer datasets through the internet is slow
- lower performance
- privacy and security concerns
- more expensive for big and long term projects

Tools on NGS data analysis

Quality	FastQC	
Trimming	cutadapt	
Assembly	abyss, velvet,	
ORFs prediction	glimmer, augustus,	
Annotation	Blast2GO	
Mapping	BWA, bowtie, hpgaligner	

Tools on NGS data analysis

Differential expression	babelomics, cuffdiff, bioconductor	
Variant calling and Variant annotations	GATK, samtools, Annovar, BiERapp	
Metagenomics	qimme, mothur	
Methilation	bismark	
Functional profiling	babelomics	
Path signaling	hiPathia and Pathact	

NGS Data Analysis Pipeline

NGS Data Analysis Pipeline

NGS Data Analysis Pipeline

THANKS

