Signaling pathways analysis: HiPathia

Alicia Amadoz

September 30th, 2016

GDA
International Course on
Genomic Data Analysis

Outline

- 1 Signaling pathways
 - Methods
- 2 HiPathia
 - Preprocess
 - Method
- 3 HiPathia Web Tool
 - Usage
 - Results

Signaling pathways

Signal transduction

Cellular mechanism which allows the cell to respond to different stimuli by means of biochemical reactions

Signaling pathways

Cascades of protein activations and inhibitions

Pathway Methods GDA

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

- **DEGraph**: Based on DE
- Clipper: 2 test method
- SPIA: Impact factor
- **Sub-SPIA**: Find subnetwork by DE
- **HiPathia**: Computes signal for each

• **DEGraph**: Based on DE

• Clipper: 2 test method

SPIA: Impact factor

Sub-SPIA: Find subnetwork by DE

• **HiPathia**: Computes signal for each

• **DEGraph**: Based on DE

• Clipper: 2 test method

SPIA: Impact factor

Sub-SPIA: Find subnetwork by DE

• HiPathia: Computes signal for each

- **DEGraph**: Based on DE
- Clipper: 2 test method
- SPIA: Impact factor
- Sub-SPIA: Find subnetwork by DE and apply SPIA
- **HiPathia**: Computes signal for each

- DEGraph: Based on DE
- Clipper: 2 test method
- SPIA: Impact factor
- Sub-SPIA: Find subnetwork by DE and apply SPIA
- **HiPathia**: Computes signal for each sample

HiPathia

Preprocess

Subpathways

Effector subpathway

Subgraph of the pathway including any node in a path ending in an effector protein

Subpathways

Decomposed subpathway

Subgraph of the pathway including only one input and one output node

Normalization

Use normalization pipeline depending on technology

Microarray

- Intensities matrix
- RMA
- quantiles

RNA-Seq

- Counts matrix
- TMM
- log transformation

Normalization

Use normalization pipeline depending on technology

Microarray

- Intensities matrix
- RMA
- quantiles

RNA-Seq

- Counts matrix
- TMM
- log transformation

Expression matrix

HiPathia

Method

Intuitive idea

Intuitive idea

Intuitive idea

- ① Compute a node score based on the expression
- 2 Compute signal passing through each node n

- ① Compute a node score based on the expression
- 2 Compute signal passing through each node n

$$S_n = v_n \cdot (1 - \prod_{s_i \in A} (1 - s_i)) \cdot \prod_{s_j \in I} (1 - s_j)$$

 S_n : Signal value through n

 v_n : Node value

A: Activation edges

1: Inhibition edges

Functional annotation

Functional annotation

We annotate each effector protein to a function

- Uniprot keywords
- GO annotation

Functional annotation

We annotate each effector protein to a function

- Uniprot keywords
- GO annotation

HiPathia

Web tool

Logging in

hipathia.babelomics.org

Upload data

Upload data

Workflow

Workflow

Tools

- Differential signaling
 - Compare signal activity between two conditions
 - Correlate path value with a continuous variable
- Prediction
 - Construct a predictor from a dataset
 - Predict classes from new dataset us ng t e pred

Tools

- Differential signaling
 - Compare signal activity between two conditions
 - Correlate path value with a continuous variable
- Prediction
 - Construct a predictor from a dataset
 - Predict classes from new dataset using the predictor

HiPathia

Results

Heatmap

Graphical representation of data where values in a matrix are represented as colors

Principal Components Analysis (PCA)

Statistical procedure to convert a set of observations into a set of values of linearly uncorrelated variables

Viewer

Viewer

Viewer

Exercises

HiPathia exercises

Exercise 1

Do the Differential signaling worked example

Exercise 2

Do the Prediction worked example

- Train a predictor following these steps
- 2 Test a new dataset following these steps

Exercises 3,4,...

Do the Differential signaling exercises