Introduction to NGS technologies

Joaquín Panadero Romero 28 de septiembre de 2016

GDA
International Course on
Genomic Data Analysis

OUTLINE

- 1. Basics on the NGS technologies
- 2. Comparison across NGS platforms
- 3. Computing requirements
- 4. Tools for data analysis

Basics on NGS technologies

Millions of DNA molecules sequenced simultanously

Types:

Sanger
Pyrosequencing
Sequencing by synthesis
Sequencing by ligation
Ion-Semiconductor sequencing

Sanger

Used nowadays in:

- Routine sequencing applications
- NGS data validation

Multiple DNA fragments covering each base position

Sanger

DNA fragments move according their size

Light detected shows the base added at each position

Commons among NGS technologies

Sample preparation

- bridge PCR
- emulsion PCR

Data output

Commons among NGS technologies

PCR bridge

PCR bridge

Commons among NGS technologies

Emulsion PCR

Pyrosequencing

- Large reads length generation
- High reagent cost
- High error rate over strings of 6+ homopolymers

Sequencing by synthesis

- Overcomes homopolymer issue due to terminated nucleotides
- Increased error rate with read length

Sequencing by ligation

- Based on ligase instead of polimerase
- 5 x 7 ligation cycles
- Short sequences
- Overcome homopolymer problem

Ion-Semiconductor sequencing

- Beads are attached to semiconductor transistors
- Each time one nucleaotide is added, one H+ is released
- Semiconductor transistor detects changes on PH solution

Examples of NGS systems

General overview among NGS methodologies

Coverage of genome per run		_	T	4
yrosequencing	0	0	5	151
equencing by ynthesis	455	536	11k	323k
equencing by gation	97	114	2k	69k
on semiconductor equencing	3	4	74	2k

Applications

Whole genome sequencing
Variant Calling
RNA-seq
De novo sequencing and assembly
Chip-seq
Methyl-seq
Metagenomics

Computational infrastructure for NGS data analysis

Requirements:

Conditioned data center (server rooms)

Computing cluster (racks)

Many computer nodes (servers)

High performance and capacity storage

Fast networks

Skilled people in computing (sysadmins and developers)

Alternatives: cloud computing

Pros

Flexibility
You pay what you use
Don't need to mantain a data center

Cons

Transfer datasets through the internet is slow Lower performance Privacy and security concerns More expensive for big and long term projects

Storage

Which data do we want to keep?

- Raw data (fastq)
- Processed data (fastq, bam, sam...)
- Final results (vcf, excel, txt ...)

How many storage resources are available? How long?

BGI: Beijing Genomic Institute

Sequencing instruments

- Illumina HiSeq
- AB Solid system
- Ion Torrent

Informatics infrastructure

- 20576 cores cluster
- 17PB (petabytes)

CNAG: Centro Nacional de Análisis Genómico

Sequencing instruments

• 10 Illumina HiSeq 2000

Informatics infrastructure

- 850 cores cluster
- 7.5PB (petabytes)

How we do proceed?

Fatsq format

Tools on NGS data analysis

FastQC

cutadapt

bowtie

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

samtools

Blast2GO

https://www.blast2go.com

samtools.sourceforge.net

vcftools.sourceforge.net

https://github.com/marcelm/cutadapt

vcftools

http://bowtie-bio.sourceforge.net/index.shtml

GATK

https://www.broadinstitute.org/gatk/

bwa http://bio

http://bio-bwa.sourceforge.net

tophat

https://ccb.jhu.edu/software/tophat/index.shtml

qiime http://qiime.org

Tools on NGS data analysis

cufflinks http://cole-trapnell-lab.github.io/cufflinks/	mothur www.mothur.org
abyss http://www.bcgsc.ca/platform/bioinfo/software/abyss	bismark http://www.bioinformatics.babraham.ac.uk/projects/bismark/
spades http://bioinf.spbau.ru/spades	blast https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs& DOC_TYPE=Download
glimmer https://ccb.jhu.edu/software/glimmer/	augustus http://augustus.gobics.de

Basic workflow

THANKS

