RNA-Seq Normalization in Babelomics 5

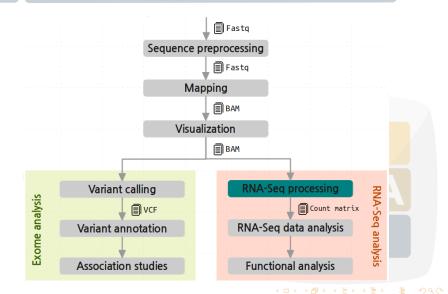
Marta R. Hidalgo

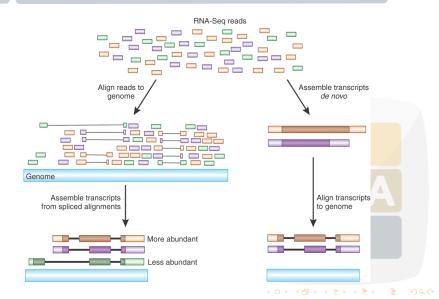
September 29th, 2016

GDA

International Course on Genomic Data Analysis

PRINCIPE FELIPE CENTRO DE INVESTIGACION


(日)、(型)、(E)、(E)、(E)、(O)()



- 3 Normalization methods
- 4 Normalization in Babelomics 5
- 5 Exercises

A1BG	203	698	643	176	177	247	100	125	
A1CF	0	0	0	0	0	0	0	1	
A2BP1	398	245	263	540	7	1	1	13	
A2LD1	89	149	81	265	312	823	217	803	
A2M	55336	76480	49882	16376	67193	21941	14414	10123	
A2ML1	67	3	6	444	170	28	84	17	
A4GALT	59	870	206	326	72	344	458	2109	
A4GNT	2	1	0	1	0	2	0	0	
AAA1	2	0	0	0	1	0	0	0	
AAAS	759	1061	2607	2129	1151	8130	1649	3447	
AACS	784	566	1168	639	643	4281	383	1756	
AACSL	1	2	1	0	1	0	0	0	
AADAC	0	1	0	1	0	84	300	264	

A1BG	203	698	643	176	177	247	100	125	
A1CF	0	0	0	0	0	0	0	1	
A2BP1	398	245	263	540	7	1	1	13	
A2LD1	89	149	81	265	312	823	217	803	
A2M	55336	76480	49882	16376	67193	21941	14414	10123	
A2ML1	67	3	6	444	170	28	84	17	
A4GALT	59	870	206	326	72	344	458	2109	
A4GNT	2	1	0	1	0	2	0	0	
AAA1	2	0	0	0	1	0	0	0	
AAAS	759	1061	2607	2129	1151	8130	1649	3447	
AACS	784	566	1168	639	643	4281	383	1756	
AACSL	1	2	1	0	1	0	0	0	
AADAC	0	1	0	1	0	84	300	264	

A1BG	203	698	643	176	177	247	100	125	
A1CF	0	0	0	0	0	0	0	1	
A2BP1	398	245	263	540	7	1	1	13	
A2LD1	89	149	81	265	312	823	217	803	
A2M	55336	76480	49882	16376	67193	21941	14414	10123	
A2ML1	67	3	6	444	170	28	84	17	
A4GALT	59	870	206	326	72	344	458	2109	
A4GNT	2	1	0	1	0	2	0	0	
AAA1	2	0	0	0	1	0	0	0	
AAAS	759	1061	2607	2129	1151	8130	1649	3447	
AACS	784	566	1168	639	643	4281	383	1756	
AACSL	1	2	1	0	1	0	0	0	
AADAC	0	1	0	1	0	84	300	264	

A1BG A1CF	203 0	698 0	643 0	176 0	177 0	247 0	100 0	125 1	
A2BP1	398	245	263	540	7	1	1	13	
A2LD1	89	149	81	265	312	823	217	803	
A2M	55336	76480	49882	16376	67193	21941	14414	10123	
A2ML1	67	3	6	444	170	28	84	17	
A4GALT	59	870	206	326	72	344	458	2109	
A4GNT	2	1	0	1	0	2	0	0	
AAA1	2	0	0	0	1	0	0	0	
AAAS	759	1061	2607	2129	1151	8130	1649	3447	
AACS	784	566	1168	639	643	4281	383	1756	
AACSL	1	2	1	0	1	0	0	0	
AADAC	0	1	0	1	0	84	300	264	

Why normalizing?

- The technology introduces different biases
- We need to remove them to compare
 - Among genes in a sample
 - Among samples

Biases

GDA

2 Library depth

8 RNA composition

Others

Gene length

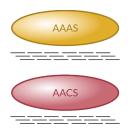
Larger genes get more reads

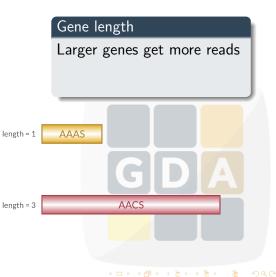
A1BG	203	698	643	176	177	247	100	125	
A1CF	0	0	0	0	0	0	0	1	
A2BP1	398	245	263	540	7	1	1	13	
A2LD1	89	149	81	265	312	823	217	803	
A2M	55336	76480	49882	16376	67193	21941	14414	10123	
A2ML1	67	3	6	444	170	28	84	17	
A4GALT	59	870	206	326	72	344	458	2109	
A4GNT	2	1	0	1	0	2	0	0	
AAA1	2	0	0	0	1	0	0	0	
AAAS	759	1061	2607	2129	1151	8130	1649	3447	
AACS	784	566	1168	639	643	4281	383	1756	
AACSL	1	2	1	0	1	0	0	0	
AADAC	0	1	0	1	0	84	300	264	

2 Library depth

- 8 RNA composition
- Others

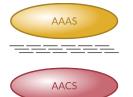
Gene length


Larger genes get more reads



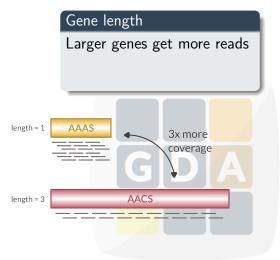
2 Library depth3 RNA composition

Others

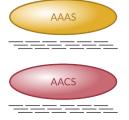


- 2 Library depth8 RNA compositio
- Others

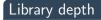
Gene length Larger genes get more reads


length = 1 AAAS GDA

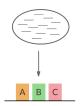
・ロト ・部ト ・ヨト ・ヨト


æ

- 2 Library depth3 RNA compositio
- Others



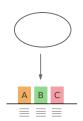
イロト イポト イモト イモト 三日



- Gene length
 Library depth
 RNA composition
- Others

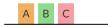
A B C

Deeper libraries give more reads

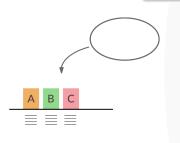


- 1 Gene length
- 2 Library depth
- 8 RNA composition
- Others

Deeper libraries give more reads



- 1 Gene length
- e Library depth
- 8 RNA composition
- Others

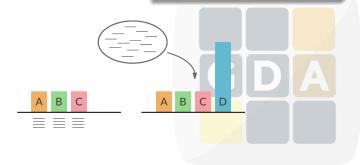


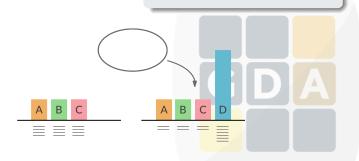
- 1 Gene length
- 2 Library depth
- 8 RNA composition
- Others

- 1 Gene length
- e Library depth
- 8 RNA composition
- Others

- 1 Gene length
- 2 Library depth
- 8 RNA composition
- Others

BC


A



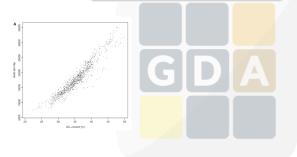
- 1 Gene length
- 2 Library depth
- 8 RNA composition
- Others

- 1 Gene length
- 2 Library depth
- 8 RNA composition
- Others

- 1 Gene length
- e Library depth
- 8 RNA composition
- Others

B C

A



- 1 Gene length
- e Library depth
- 8 RNA composition
- Others

Others

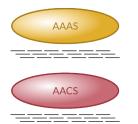
- GC-content
- Dinucleotide frequencies

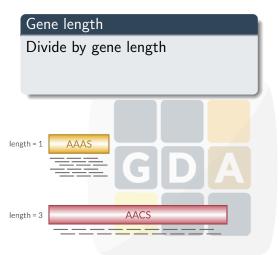
Many biases

We need to normalize!!

・ロト ・部ト ・ヨト ・ヨト

æ

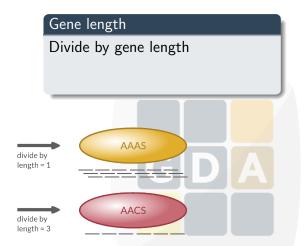



GID

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 Gene length

- 2 Library depth
- 3 RPKM
- 4 TMM
- 6 Quantiles

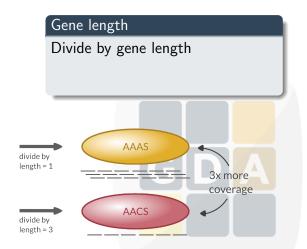


1 Gene length

- 2 Library depth
- 3 RPKM
- 4 TMM
- 6 Quantiles

AAAS

AACS

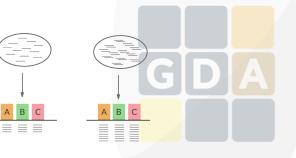

・ロト ・個ト ・モト ・モト 三日

1 Gene length

- 2 Library depth
- 8 RPKM
- 4 TMM
- 6 Quantiles

AAAS

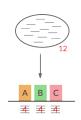
AACS

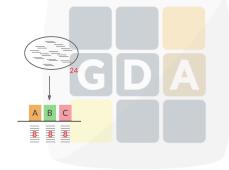


・ロト ・個ト ・モト ・モト 三日

- 1 Gene length
- e Library depth
- 8 RPKM
- 4 TMM
- 6 Quantiles

Library depth

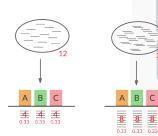

Divide by library depth



- 1 Gene length
- e Library depth
- 8 RPKM
- 4 TMM
- 6 Quantiles

Library depth

Divide by library depth



- Gene length
- 2 Library depth
- 8 RPKM
- 4 TMM
- Quantiles

Library depth

Divide by library depth

24

- Gene length
- 2 Library depth
- 8 RPKM
- 4 TMM
- Quantiles

RPKM

- Reads per Kilobase per Million
- Remove gene length and library depth biases

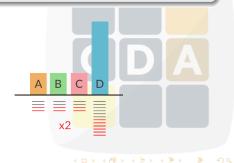

total exon reads

 $RPKM = \frac{1}{mapped \ reads \ (millions) * exon \ length \ (KB)}$

- Gene length
- e Library depth
- 8 RPKM
- 4 TMM
- 6 Quantiles

ТММ

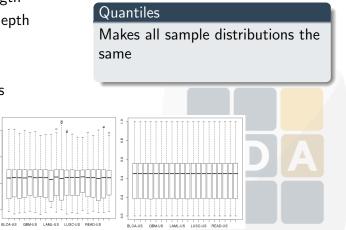
- Trimmed Means of M-values
- Assumes only a few genes are DE
- Changes library depth



- Gene length
- e Library depth
- 8 RPKM
- 4 TMM
- 6 Quantiles

ТММ

- Trimmed Means of M-values
- Assumes only a few genes are DE
- Changes library depth



Normalization methods

- 1 Gene length
- 2 Library depth
- 8 RPKM
- 🕘 TMM
- Quantiles

ç

Normalization in Babelomics 5 GDA

・ロト ・個ト ・モト ・モト 三日

Normalization in Babelomics 5

Available normalization methods in Babelomics 5

- 0 RPKM (gene length required)
- 🥺 TMM
- 8 TMM with gene length correction (gene length required)
- 4 Automatic selection of the method based on the diagnostic test for differences in RNA composition from NOISeq

Normalization in Babelomics 5

Where can we find RNA-Seq normalization in Babelomics 5?

Filling in the formular

Se	lect	vour	data
20	icce.	your	aara

The files must be on the server to select them. You can upload files using the button 🏠 inside file browser.

File browser

WorkSpace/

Select gene length file

The files must be on the server to select them. You can upload files using the button 🚯 inside file browser.

File browser

WorkSpace/

◆□ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

Normalization method

Choose automatically the normalization method

Choose manually the normalization method

O TMN

🔿 RPKN

Filling in the formular

Job information

Output folder

You can create folders using the button 🗀 + inside file browser.

 File browser
 WorkSpace/analysis

 Job name

 JobName

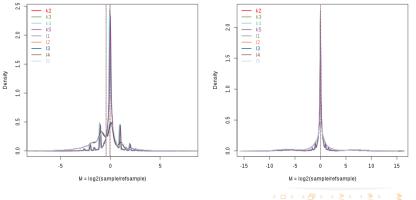
 Description

 Job info...

ヘロン 人間と 人間と 人間と

- 2

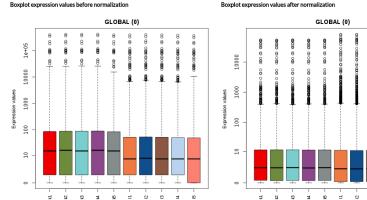
The results


RNA composition

RNA composition before normalization

RNA composition after normalization

Reference sample: k1


Reference sample: k1

200

The results

Distribution of Expression values

Boxplot expression values after normalization

4

000 000000 000

The results

Table of Normalized values

File <u>normalized_results.txt</u>							
#NAMES	k1	k2	k3	k4	k5		
TSPAN6	42.11	39.49	39.02	34.59	42.55		
TNMD	0	0	0	0.22	0		
DPM1	13.17	16.31	17.22	15.5	16.21		
SCYL3	1.54	2.12	2.21	1.88	2.31		
C1orf112	1	1.15	0.77	1.04	1.82		
FGR	2.25	3.19	2.07	2.24	1.2		
FUCA2	37.84	41.24	39.91	38.24	33.78		
GCLC	25.88	25.39	21.51	23.51	23.06		
NFYA	4.62	4.59	4.03	4.16	4.69		
STPG1	5.82	7.08	6.81	5.03	8		

29405 Results

Send to edit

Normalization exercises

Go to Babelomics 5: http://courses.babelomics.org/

Exercise 1

Run the Normalization Example (first button in the formular). Try all possible normalization methods:

- TMM with gene length
- TMM without gene length
- RPKM
- Automatic selection of the method

Compare the results. Which is the best normalization method?

・ロット (雪) (日) (日) (日)

For help, ask or visit the normalization tutorial

Normalization exercises

Exercise 2

Perform a normalization of the breast cancer data in the file brca_demo_counts_4babelomics.txt

Exercise 3

We will use a Kidney Renal Clear Cell carcinoma (KIRC) dataset from the TCGA

- 1 Go to the GDA 2016 wiki
- Oownload the kirc_demo_counts_4babelomics.txt
- Opload this file to Babelomics 5
- 4 Normalize the data

For help, ask or visit the normalization tutorial