RNA-Seq Normalization in Babelomics 5

Marta R. Hidalgo

September 29th, 2016

GDA
International Course on
Genomic Data Analysis

Outline

1 Introduction

2 Biases

3 Normalization methods

4 Normalization in Babelomics 5

5 Exercises

Introduction

Introduction

What do we get? A counts matrix (integer data)

A1BG	203	698	643	176	177	247	100	125
A1CF	0	0	0	0	0	0	0	1
A2BP1	398	245	263	540	7	1	1	13
A2LD1	89	149	81	265	312	823	217	803
A2M	55336	76480	49882	16376	67193	21941	14414	10123
A2ML1	67	3	6	444	170	28	84	17
A4GALT	59	870	206	326	72	344	458	2109
A4GNT	2	1	0	1	0	2	0	0
AAA1	2	0	0	0	1	0	0	0
AAAS	759	1061	2607	2129	1151	8130	1649	3447
AACS	784	566	1168	639	643	4281	383	1756
AACSL	1	2	1	0	1	0	0	0
AADAC	0	1	0	1	0	84	300	264

Introduction

What do we get? A counts matrix (integer data)

A1BG	203	698	643	176	177	247	100	125
A1CF	0	0	0	0	0	0	0	1
A2BP1	398	245	263	540	7	1	1	13
A2LD1	89	149	81	265	312	823	217	803
A2M	55336	76480	49882	16376	67193	21941	14414	10123
A2ML1	67	3	6	444	170	28	84	17
A4GALT	59	870	206	326	72	344	458	2109
A4GNT	2	1	0	1	0	2	0	0
AAA1	2	0	0	0	1	0	0	0
AAAS	759	1061	2607	2129	1151	8130	1649	3447
AACS	784	566	1168	639	643	4281	383	1756
AACSL	1	2	1	0	1	0	0	0
AADAC								

Introduction

What do we get? A counts matrix (integer data)

A1BG	203	698	643	176	177	247	100	125
A1CF	0	0	0	0	0	0	0	1
A2BP1	398	245	263	540	7	1	1	13
A2LD1	89	149	81	265	312	823	217	803
A2M	55336	76480	49882	16376	67193	21941	14414	10123
A2ML1	67	3	6	444	170	28	84	17
A4GALT	59	870	206	326	72	344	458	2109
A4GNT	2	1	0	1	0	2	0	0
AAA1	2	0	0	0	1	0	0	0
AAAS	759	1061	2607	2129	1151	8130	1649	3447
AACS	784	566	1168	639	643	4281	383	1756
AACSL	1	2	1	0	1	0	0	0
AADAC	0	1	0	1	0	84	300	264

Introduction

What do we get? A counts matrix (integer data)

A1BG	203	698	643	176	177	247	100	125
A1CF	0	0	0	0	0	0	0	1
A2BP1	398	245	263	540	7	1	1	13
A2LD1	89	149	81	265	312	823	217	803
A2M	55336	76480	49882	16376	67193	21941	14414	10123
A2ML1	67	3	6	444	170	28	84	17
A4GALT	59	870	206	326	72	344	458	2109
A4GNT	2	1	0	1	0	2	0	0
AAA1	2	0	0	0	1	0	0	0
AAAS	759	1061	2607	2129	1151	8130	1649	3447
AACS	784	566	1168	639	643	4281	383	1756
AACSL	1	2	1	0	1	0	0	0
AADAC	0	1	0	1	0	84	300	264

Introduction

Why normalizing?

- The technology introduces different biases
- We need to remove them to compare
- Among genes in a sample
- Among samples

Biases

Biases

(1) Gene length
(2) Library depth (3) RNA composition

(4) Others

A1BG	203	698
A1CF	0	0
A2BP1	398	245
A2LD1	89	149
A2M	55336	76480
A2ML1	67	3
A4GALT	59	870
A4GNT	2	1
AAA1	2	0
AAAS	759	1061
AACS	784	566
AACSL	1	2
AADAC	0	1

Gene length

Larger genes get more reads

Biases

(1) Gene length
(2) Library depth
(3) RNA composition

4 Others

Gene length

Larger genes get more reads

Biases

(1) Gene length
(2) Library depth
(3) RNA composition

4 Others

Gene length

Larger genes get more reads

length $=3 \square$ AACS

Biases

(1) Gene length

2 Library depth
(3) RNA composition Others

Gene length

Larger genes get more reads

length $=3$

Biases

(1) Gene length
(2) Library depth
(3) RNA composition Others

Gene length

Larger genes get more reads

length $=3$

Biases

(1) Gene length
(2) Library depth (3) RNA composition (4) Others

Library depth

Deeper libraries give more reads

Biases

(1) Gene length

2 Library depth
(3) RNA composition

Level of expression

Sample 1 Sample 2

Biases

(1) Gene length

2 Library depth
(3) RNA composition
(4) Others

Others

- GC-content
- Dinucleotide frequencies

Normalization methods

Normalization methods

(1) Gene length

2 Library depth
(3) RPKM

TMM
(5) Quantiles

Gene length
Divide by gene length

Normalization methods

(1) Gene length

2 Library depth
(3) RPKM
^ TMM
(5) Quantiles

Divide by gene length

Gene length

divide by length $=3$

Normalization methods

(1) Gene length

2 Library depth
(3) RPKM
a TMM
(5) Quantiles

Divide by gene length

Gene length

Normalization methods

(1) Gene length

2 Library depth
(3) RPKM
(4) TMM

(3) Quantiles

Library depth
 Divide by library depth

Normalization methods

(1) Gene length

2 Library depth
(3) RPKM
(4) TMM

(3) Quantiles

Library depth
 Divide by library depth

Normalization methods

(1) Gene length
(2) Library depth
(3) RPKM

TMM
Quantiles

$$
\mathrm{RPKM}=\frac{\text { total exon reads }}{\text { mapped reads }(\text { millions }) * \text { exon length }(K B)}
$$

Normalization methods

(1) Gene length
(2) Library depth
(3) RPKM
(4) TMM

Quantiles

Level of expression

Sample 1
Sample 2

Normalization methods

(1) Gene length
(2) Library depth
(3) RPKM
(4) TMM

Quantiles

Level of expression

Sample 1
Sample 2

Normalization methods

(1) Gene length
(2) Library depth
(3) RPKM
(4) TMM
(5) Quantiles

Quantiles

Makes all sample distributions the same

Normalization in Babelomics 5

Normalization in Babelomics 5

Available normalization methods in Babelomics 5
(1) RPKM (gene length required)
(2) TMM
(3) TMM with gene length correction (gene length required)
(4) Automatic selection of the method based on the diagnostic test for differences in RNA composition from NOISeq

Normalization in Babelomics 5

Where can we find RNA-Seq normalization in Babelomics 5?
Babelomics 5 Processing \vee Expression \vee Genomics \vee Cancer \vee Functional \vee

Edit

- Edit your uploaded data

Data Matrix

- Pre-processing
mi
jiON, G
DFUNC VALYSI

Filling in the formular

Filling in the formular

Job information

Output folder
You can create folders using the button \square + inside file browser.
File browser
WorkSpace/analysis x
Job name
JobName
Description

```
Job info...
```


The results

RNA composition

Reference sample: k1

RNA composition after normalization

The results

Distribution of Expression values

Boxplot expression values before normalization

Boxplot expression values after normalization

The results

Table of Normalized values

\#NAMES	k1	k2	k3	k4	k5
TSPAN6	42.11	39.49	39.02	34.59	42.55
TNMD	0	0	0	0.22	0
DPM1	13.17	16.31	17.22	15.5	16.21
SCYL3	1.54	2.12	2.21	1.88	2.31
C1orf112	1	1.15	0.77	1.04	1.82
FGR	2.25	3.19	2.07	2.24	1.2
FUCA2	37.84	41.24	39.91	38.24	33.78
GCLC	25.88	25.39	21.51	23.51	23.06
NFYA	4.62	4.59	4.03	4.16	4.69
STPG1	5.82	7.08	6.81	5.03	8
29405 Results					
(5) Send to edit					

Exercises

Normalization exercises

Exercise 1

Perform a normalization of the breast cancer data in the file brca_demo_counts_4babelomics.txt

Exercise 2

We will use a Kidney Renal Clear Cell carcinoma (KIRC) dataset from the TCGA
(1) Go to the GDA 2016 wiki
(2) Download the kirc_demo_counts_4babelomics.txt
(3) Upload this file to Babelomics 5
(4) Normalize the data

For help, ask or visit the normalization tutorial

