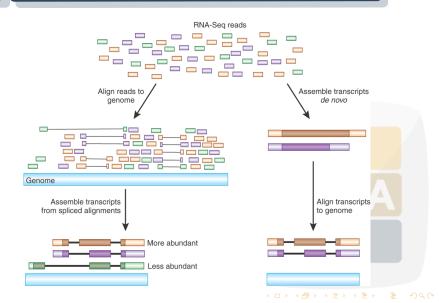
RNA-Seg Normalization in Babelomics 5

Marta R. Hidalgo

September 29th, 2016

GDA
International Course on
Genomic Data Analysis



Outline

- 1 Introduction
- 2 Biases
- 3 Normalization methods
- 4 Normalization in Babelomics 5
- 5 Exercises

A1BG	203	698	643	176	177	247	100	125
A1CF	0	0	0	0	0	0	0	1
A2BP1	398	245	263	540	7	1	1	13
A2LD1	89	149	81	265	312	823	217	803
A2M	55336	76480	49882	16376	67193	21941	14414	10123
A2ML1	67	3	6	444	170	28	84	17
A4GALT	59	870	206	326	72	344	458	2109
A4GNT	2	1	0	1	0	2	0	0
AAA1	2	0	0	0	1	0	0	0
AAAS	759	1061	2607	2129	1151	8130	1649	3447
AACS	784	566	1168	639	643	4281	383	1756
AACSL	1	2	1	0	1	0	0	0
AADAC	0	1	0	1	0	84	300	264

A1BG	203	698	643	176	177	247	100	125
A1CF	0	0	0	0	0	0	0	1
A2BP1	398	245	263	540	7	1	1	13
A2LD1	89	149	81	265	312	823	217	803
A2M	55336	76480	49882	16376	67193	21941	14414	10123
A2ML1	67	3	6	444	170	28	84	17
A4GALT	59	870	206	326	72	344	458	2109
A4GNT	2	1	0	1	0	2	0	0
AAA1	2	0	0	0	1	0	0	0
AAAS	759	1061	2607	2129	1151	8130	1649	3447
AACS	784	566	1168	639	643	4281	383	1756
AACSL	1	2	1	0	1	0	0	0
AADAC	0	1	0	1	0	84	300	264

A1BG	203	698	643	176	177	247	100	125
A1CF	0	0	0	0	0	0	0	1
A2BP1	398	245	263	540	7	1	1	13
A2LD1	89	149	81	265	312	823	217	803
A2M	55336	76480	49882	16376	67193	21941	14414	10123
A2ML1	67	3	6	444	170	28	84	17
A4GALT	59	870	206	326	72	344	458	2109
A4GNT	2	1	0	1	0	2	0	0
AAA1	2	0	0	0	1	0	0	0
AAAS	759	1061	2607	2129	1151	8130	1649	3447
AACS	784	566	1168	639	643	4281	383	1756
AACSL	1	2	1	0	1	0	0	0
AADAC	0	1	0	1	0	84	300	264

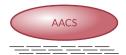
A1BG	203	698	643	176	177	247	100	125
A1CF	0	0	0	0	0	0	0	1
A2BP1	398	245	263	540	7	1	1	13
A2LD1	89	149	81	265	312	823	217	803
A2M	55336	76480	49882	16376	67193	21941	14414	10123
A2ML1	67	3	6	444	170	28	84	17
A4GALT	59	870	206	326	72	344	458	2109
A4GNT	2	1	0	1	0	2	0	0
AAA1	2	0	0	0	1	0	0	0
AAAS	759	1061	2607	2129	1151	8130	1649	3447
AACS	784	566	1168	639	643	4281	383	1756
AACSL	1	2	1	0	1	0	0	0
AADAC	0	1	0	1	0	84	300	264

Why normalizing?

- The technology introduces different biases
- We need to remove them to compare
 - Among genes in a sample
 - Among samples

- Gene length
- 2 Library depth
- **3** RNA composition
- 4 Others

Gene length


Larger genes get more reads

	A1BG	203	698	643	176	177	247	100	125
,	A1CF	0	0	0	0	0	0	0	1
	A2BP1	398	245	263	540	7	1	1	13
	A2LD1	89	149	81	265	312	823	217	803
	A2M	55336	76480	49882	16376	67193	21941	14414	10123
	A2ML1	67	3	6	444	170	28	84	17
	A4GALT	59	870	206	326	72	344	458	2109
	A4GNT	2	1	0	1	0	2	0	0
	AAA1	2	0	0	0	1	0	0	0
ſ	AAAS	759	1061	2607	2129	1151	8130	1649	3447
U	AACS	784	566	1168	639	643	4281	383	1756
	AACSL	1	2	1	0	1	0	0	0
1	AADAC	0	1	0	1	0	84	300	264

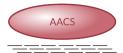
- Gene length
- 2 Library depth
- 8 RNA composition
- 4 Others

Gene length

Larger genes get more reads

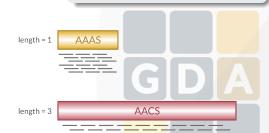
- Gene length

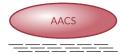
Larger genes get more reads


length = 3

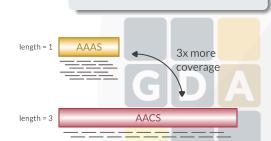
AACS

- Gene length
- 2 Library depth
- 8 RNA composition
- 4 Others

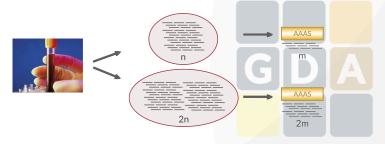



Gene length

Larger genes get more reads


- Gene length

Gene length


Larger genes get more reads

- Gene length
- 2 Library depth
- **3** RNA composition
- 4 Others

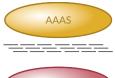
Library depth

Deeper libraries give more reads

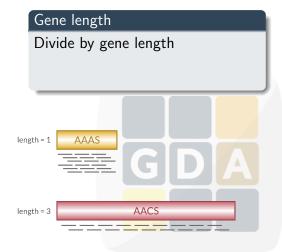
- Gene length
- 2 Library depth
- **3** RNA composition
- 4 Others

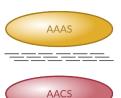
RNA composition

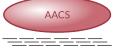

A greedy gene steals reads from the others

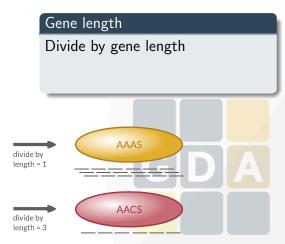

- Gene length
- 2 Library depth
- **6** RNA composition
- Others

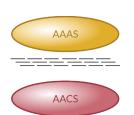
Others

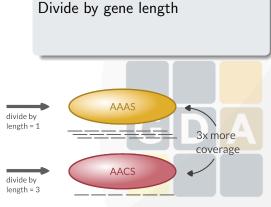

- GC-content
- Dinucleotide frequencies


- Gene length
- 2 Library depth
- RPKN
- 4 TMV
- Guantiles

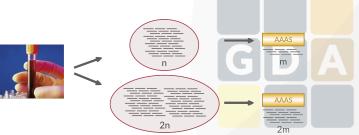





- Gene length
- 2 Library depth
- RPKN
- 4 TMV
- Quantiles



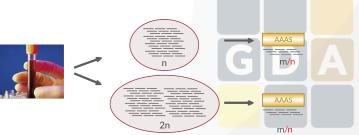
- Gene length
- 2 Library depth
- RPKN
- 4 TMV
- Quantiles



Gene length

- Gene length
- 2 Library depth
- RPKN
- TMM
- G Quantiles

Library depth


Divide by library depth

- Gene length
- 2 Library depth
- RPKN
- TMM
- G Quantiles

Library depth

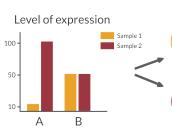
Divide by library depth

- Gene length
- 2 Library depth
- RPKM
- 4 TMN
- G Quantiles

RPKM

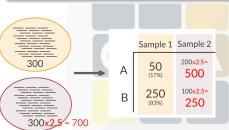
- Reads per Kilobase per Million
- Remove gene length and library depth biases

$$RPKM = \frac{total\ exon\ reads}{mapped\ reads\ (millions)*exon\ length\ (KB)}$$


- Gene length
- 2 Library depth
- RPKM
- 4 TMM
- Quantiles

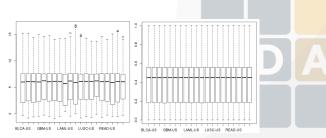
TMM

- Trimmed Means of M-values
- Assumes only a few genes are DE
- Changes library depth



- Gene length
- 2 Library depth
- RPKM
- 4 TMM
- Quantiles

TMM


- Trimmed Means of M-values
- Assumes only a few genes are DE
- Changes library depth

- Gene length
- 2 Library depth
- RPKM
- 4 TMM
- Quantiles

Quantiles

Makes all sample distributions the same

Normalization in Babelomics 5 GDA

Normalization in Babelomics 5

Available normalization methods in Babelomics 5

- RPKM (gene length required)
- 2 TMM
- TMM with gene length correction (gene length required)
- Automatic selection of the method based on the diagnostic test for differences in RNA composition from NOISeq

Normalization in Babelomics 5

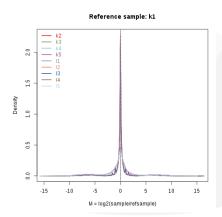
Where can we find RNA-Seq normalization in Babelomics 5?

Filling in the formular

	server to select them. ng the button 📤 inside file browser.	
File browser	WorkSpace/	
Select gene length f	file	
The files must be on the	server to select them.	
File browser	WorkSpace/	
Normalization meth	hod	
Choose automatica	lly the normalization method	
_	olly the normalization method ne normalization method	

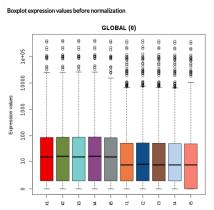
Filling in the formular

Job information		
Output folder		
You can create folders u	ising the button 🗀 + inside file browser.	
File browser	WorkSpace/analysis ×	
Job name		
JobName		
Description		
Job info		

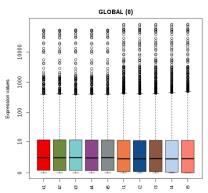

The results

RNA composition

RNA composition before normalization


Reference sample: k1 Density 0.5 0.0 M = log2(sample/refsample)

RNA composition after normalization



The results

Distribution of Expression values

Boxplot expression values after normalization

The results

Table of Normalized values

Send to edit

File normalized results.bd								
#NAMES	k1	k2	k3	k4	k5			
TSPAN6	42.11	39.49	39.02	34.59	42.55			
TNMD	0	0	0	0.22	0			
DPM1	13.17	16.31	17.22	15.5	16.21			
SCYL3	1.54	2.12	2.21	1.88	2.31			
C1orf112	1	1.15	0.77	1.04	1.82			
FGR	2.25	3.19	2.07	2.24	1.2			
FUCA2	37.84	41.24	39.91	38.24	33.78			
GCLC	25.88	25.39	21.51	23.51	23.06			
NFYA	4.62	4.59	4.03	4.16	4.69			
STPG1	5.82	7.08	6.81	5.03	8			
29405 Results								

Exercises

Normalization exercises

Go to **Babelomics 5**: http://courses.babelomics.org/

Exercise 1

Run the Normalization Example (first button in the formular). Try all possible normalization methods:

- TMM with gene length
- TMM without gene length
- RPKM
- Automatic selection of the method

Compare the results. Which is the best normalization method?

For help, ask or visit the normalization tutorial

Normalization exercises

Exercise 2

Perform a normalization of the breast cancer data in the file brca_demo_counts_4babelomics.txt

Exercise 3

We will use a Kidney Renal Clear Cell carcinoma (KIRC) dataset from the TCGA

- 1 Go to the GDA 2016 wiki
- 2 Download the kirc_demo_counts_4babelomics.txt
- 3 Upload this file to Babelomics 5
- Ormalize the data

For help, ask or visit the normalization tutorial

