How do we prioritize variants in whole exome studies?

MDA course on NGS Data Analysis Valencia, 28 Sep 2015

Introduction

- Whole-exome sequencing has become a fundamental tool for the discovery of disease-related genes of familial diseases but there are difficulties to find the causal mutation among the enormous background
- There are different scenarios, so we need different and immediate strategies of prioritization
- Vast amount of biological knowledge available in many databases
- We need a tool to integrate this information and filter immediately to select candidate variants related to the disease

How does BiERapp work?

Input: VCF file

Primary Analysis

Secondary

Discovering variants

Input: VCF multisample

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seg/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                                ALT
                                       OUAL FILTER INFO
                                                                                       FORMAT
                                                                                                   NA00001
                                                                                                                  NA00002
                                                                                                                                 NA00003
       14370 rs6054257 G
                                        29 PASS NS=3;DP=14;AF=0.5;DB;H2
                                                                                       GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20
                                             q10
                                                                                       GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
       17330
                                                   NS=3:DP=11:AF=0.017
20
       1110696 rs6040355 A
                                             PASS NS=2; DP=10; AF=0.333, 0.667; AA=T; DB GT: GQ: DP: HQ 1 | 2:21:6:23, 27 2 | 1:2:0:18, 2 2/2:35:4
20
       1230237 .
                                             PASS NS=3:DP=13:AA=T
                                                                                      GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1234567 microsat1 GTC
                                G.GTCT 50 PASS NS=3:DP=9:AA=G
                                                                                       GT:GO:DP
                                                                                                   0/1:35:4
                                                                                                                  0/2:17:2
                                                                                                                                 1/1:40:3
```

One VCF (Variant Calling Format) file for family or group

Getting information

SIFT

- SIFT predicts whether an amino acid substitution affects protein function
- Interpretation: 1 (tolerated) to 0 (not tolerated)

http://sift.jcvi.org/

PolyPhen

- Polymorphism Phenotyping is a tool which predicts possible impact of an amino acid substitution on the structure and function of a human protein
- Interpretation: 1 (probably damage) to 0 (benign)

http://genetics.bwh.harvard.edu/pph2/index.shtml

Getting information

http://www.ensembl.org/info/genome/variation/predicted_data.html

Tool interface

http://bierapp.babelomics.org/

Tool interface

1. Summary. Description about number or variants, INDELs... Also a distribution of consequences types.

2. List of candidate variants.

We can order this list by several criteria.

3. Effects for each transcript where we detected a candidate variant.

The plot shows MAFs for different groups (1000 Genomes, Exome Variant Server)

4. Visualization of candidate variants from GenomeMaps

Remarks

- The proposed web-based interactive framework has great potential to detect disease-related variants in familial diseases as demonstrated by its successful use in several studies
- The use of the filters is interactive and the results are almost instantaneously displayed in a panel that includes the genes affected, the variants and specific information for them
- Candidate variants are new knowledge useful for future diagnostic

http://bierapp.babelomics.org/

Pedigree

Case 1.

De novo variantsHow many variants?

Case 2.

Recessive heritageHow many variants?

Case 3.

- Recessive heritage
- Rare disease (MAF < 0.1)

How many variants?

Case 4.

Variants in mother and daughter at the same time

How many variants?

Case 5.

- Variants in mother and daughter at the same time
- Only in chromosome 4

How many variants?

Case 6.

- Variants in mother and daughter at the same time
- Only in these genes: HEXB,NFKB1,KLRC3

How many variants?

More information

Nucleic Acids Research Advance Access published May 6, 2014

Nucleic Acids Research, 2014 1 doi: 10.1093/nar/gku407

A web-based interactive framework to assist in the prioritization of disease candidate genes in whole-exome sequencing studies

Alejandro Alemán^{1,2}, Francisco Garcia-Garcia¹, Francisco Salavert^{1,2}, Ignacio Medina¹ and Joaquín Dopazo^{1,2,3,*}

¹Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain, ²Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia 46010, Spain and

BiERapp Tutorial:

http://bierapp.babelomics.org/

³Functional Genomics Node, (INB) at CIPF, Valencia 46012, Spain