Signaling pathways analysis

Marta R. Hidalgo

Systems Genomics Lab, CIPF

September 30th, GDA 2015

Signaling pathways analysis

Marta R. Hidalgo

Signaling pathways

Databases Pathway metho

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Databases Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Exercises

Signaling pathways

Databases Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

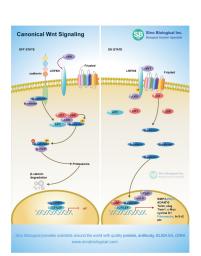
Method

Computing the signal Functional annotation Further analysis

Signaling pathways analysis

Marta R. Hidalgo

Signaling pathways


Databases Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Signal transduction

Cellular mechanism which allows the cell to respond to different stimuli by means of biochemical reactions

Signaling pathways

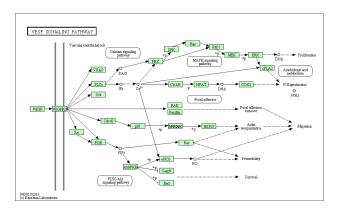
Cascades of protein activations and inhibitions

Marta R. Hidalgo

${\sf Signaling\ pathways}$

Databases Pathway methods

reprocess


Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Databases

▶ KEGG

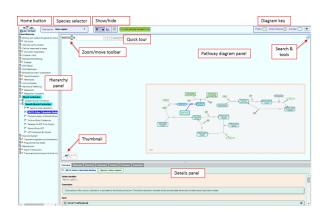
Marta R. Hidalgo

Signaling pathways

Databases

Pathway method

Preprocess


Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Databases

- KEGG
- Reactome

Marta R. Hidalgo

Signaling pathways

Databases

Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

KEGG

Reactome

Others: WikiPathways,...

- Marta R. Hidalgo

Databases

Normalization

Computing the signal

Pathways for the People

Pathway methods

► SPIA

Signaling pathways analysis

Marta R. Hidalgo

Signaling pathways

Databases

Pathway methods

renrocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

► SPIA

PARADIGM

Databases

Pathway methods

reprocess

Modeling KEGO Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

vercises

- Signaling pathways
 - Databases
- Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

xercises

Pathifier

► SPIA

PARADIGM

Databases Pathway methods

ratiiway illetilous

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

xercises

Score per pathway

- ► SPIA
- PARADIGM
- Pathifier

Databases

Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

vercises

Score per pathway

- SPIA
- PARADIGM
- Pathifier

SubSPIA

Databases Pathway methods

Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

vorcisos

Score per pathway

- ► SPIA
- PARADIGM
- Pathifier

- ► SubSPIA
- Pathiways

Databases Pathway methods

.

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

xercises

Score per pathway

- ► SPIA
- PARADIGM
- Pathifier

Score per subpathway

- SubSPIA
- Pathiways

Databases Pathway methods

.

Preprocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

xercises

Score per pathway

- SPIA
- PARADIGM
- Pathifier

Score per subpathway

- SubSPIA
- Pathiways
 - Probabilistic approach
 - Only Microarray data
 - Only processed KEGG pathways

Method

Signaling pathways analysis

Marta R. Hidalgo

Signaling pathway

Databases Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Independent from gene expression technology

Marta R. Hidalgo

Signaling pathways

Databases Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Marta R. Hidalgo

Signaling pathways
Databases

Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

..........

▶ Independent from gene expression technology

▶ Independent from pathway database

Marta R. Hidalgo

Signaling pathways
Databases

Preprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

-vorcicos

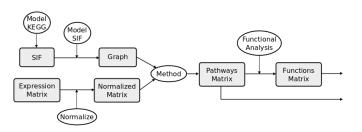
- Independent from gene expression technology
- Independent from pathway database
 - ▶ SIF + attributes file

Databases Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

Method


Computing the signal Functional annotation Further analysis

-vorcicos

- Independent from gene expression technology
- Independent from pathway database
 - ▶ SIF + attributes file
 - Module to process KEGG pathways

Input

- ► SIF file + attributes
- Expression matrix

Marta R. Hidalgo

Signaling pathways

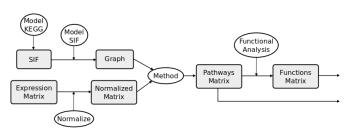
Databases Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis



Input

- ► SIF file + attributes
- Expression matrix

Output

- Pathways matrix
- Functions matrix

Databases

Databases Pathway methods

Preprocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

Preprocess

Signaling pathways analysis

Marta R. Hidalgo

Signaling pathway

Databases Pathway methods

Preprocess

Subpathways
Normalization

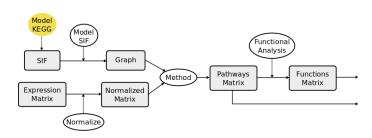
Method

Computing the signal Functional annotation Further analysis

vercises

Marta R. Hidalgo

Signaling pathway Databases


renrocess

Modeling KEGG

Subpathways Normalization

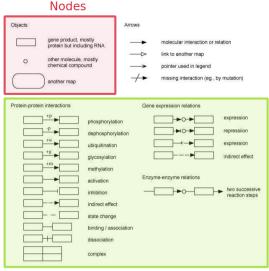
Method

Computing the signal Functional annotation Further analysis

Marta R. Hidalgo

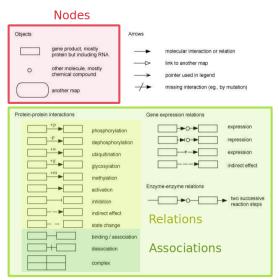
Signaling pathway
Databases

Preprocess


Modeling KEGG Subpathways

Normalization

Method


Computing the signal Functional annotation Further analysis

xercises

Edges

Modeling KEGG pathways

Marta R. Hidalgo

Signaling pathways

Pathway method

Preprocess

Modeling KEGG Subpathways

Normalization

/lethod

Computing the signal Functional annotation Further analysis

xercises

Edges

Modeling KEGG pathways

Signaling pathways analysis

Marta R. Hidalgo

Modeling KEGG

Normalization Only activations/inhibitions allowed

Computing the signal

Marta R. Hidalgo

Signaling pathways

Databases Pathway methods

reprocess

Modeling KEGG Subpathways

Subpathways Normalization

1ethod

Computing the signal Functional annotation Further analysis

vorciono

Only activations/inhibitions allowed

▶ **Relation edges:** Simplified to activation/inhibition

Databases Pathway methods

Preprocess

Modeling KEGG Subpathways

Normalization

/lethod

Computing the signal Functional annotation Further analysis

cercises

Only activations/inhibitions allowed

- ▶ **Relation edges:** Simplified to activation/inhibition
- ► **Association edges:** The net is modeled to include the information

Databases Pathway methods

Preprocess

Modeling KEGG

Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

xercises

Plain nodes

Include one node, many genes

Complex nodes Include different nodes

4□ > 4∰ > 4∃ > 4∃ > ∃ 90€

Plain nodes

genes

Include one node, many

Marta R. Hidalgo

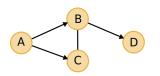
Signaling pathway
Databases

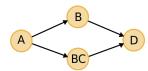
reprocess

Modeling KEGG

Subpathways Normalization

Method


Computing the signal Functional annotation Further analysis


xercises

Complex nodes

Include different nodes

▶ Binding/association

Plain nodes

genes

Include one node, many

Marta R. Hidalgo

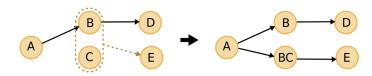
Signaling pathway
Databases
Pathway methods

reprocess

Modeling KEGG

Subpathways Normalization

Method


Computing the signal Functional annotation Further analysis

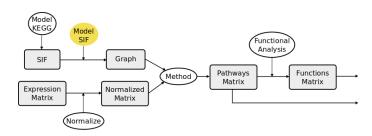
xercises

Complex nodes

Include different nodes

- Binding/association
- ► Group

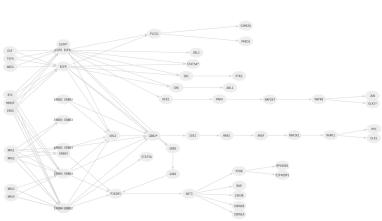
Marta R. Hidalgo


Signaling pathwa
Databases

reprocess

Modeling KEGG Subpathways Normalization

Method


Computing the signal Functional annotation Further analysis

Effector subpathways

Effector proteins

Last genes of the network, responsibles for performing the corresponding molecular function

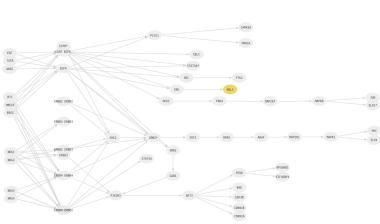
Marta R. Hidalgo

Signaling pathway
Databases

eprocess

Modeling KEGG Subpathways Normalization

1ethod


Computing the signal Functional annotation Further analysis

Effector subpathways

Effector subpathway

Subgraph of the pathway including any node in a path ending in an effector protein

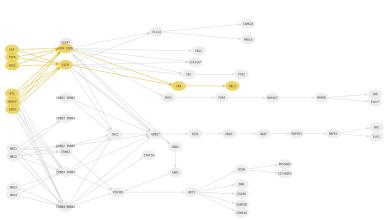
Marta R. Hidalgo

Signaling pathways
Databases

eprocess

Modeling KEGG Subpathways Normalization

lethod


Computing the signal Functional annotation Further analysis

Effector subpathways

Effector subpathway

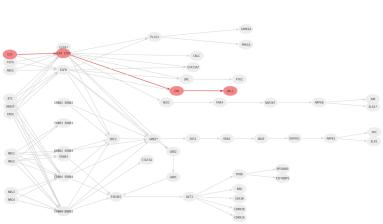
Subgraph of the pathway including any node in a path ending in an effector protein

Marta R. Hidalgo

Signaling pathway
Databases

eprocess

Modeling KEGG Subpathways Normalization


lethod

Computing the signal Functional annotation Further analysis

Single subpathway

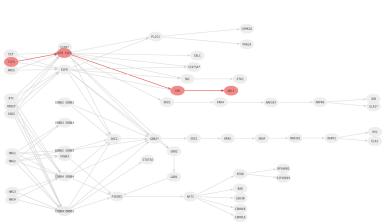
Subgraph of the pathway including only one input and one output node

Marta R. Hidalgo

Signaling pathways
Databases

eprocess

Modeling KEGG Subpathways Normalization


lethod

Computing the signal Functional annotation Further analysis

Single subpathway

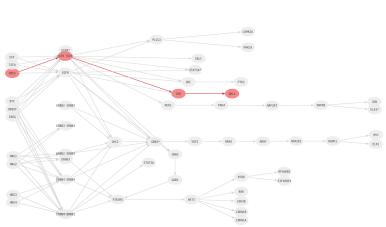
Subgraph of the pathway including only one input and one output node

Marta R. Hidalgo

Signaling pathway
Databases

eprocess

Modeling KEGG Subpathways Normalization


lethod

Computing the signal Functional annotation Further analysis

Single subpathway

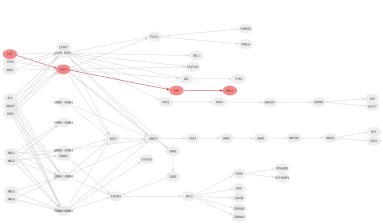
Subgraph of the pathway including only one input and one output node

Marta R. Hidalgo

Signaling pathway Databases

eprocess

Modeling KEGG Subpathways Normalization


lethod

Computing the signal Functional annotation Further analysis

Single subpathway

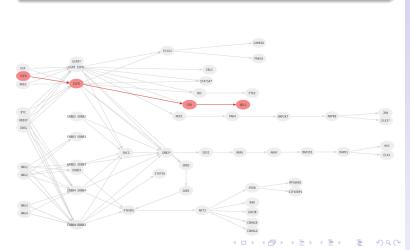
Subgraph of the pathway including only one input and one output node

Marta R. Hidalgo

Signaling pathway Databases

eprocess

Modeling KEGG Subpathways Normalization


lethod

Computing the signal Functional annotation Further analysis

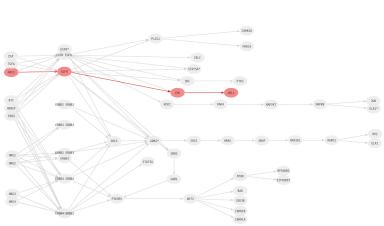
Single subpathway

Subgraph of the pathway including only one input and one output node

Marta R. Hidalgo

Signaling pathway Databases

eprocess


Modeling KEGG Subpathways Normalization

lethod

Computing the signal Functional annotation Further analysis

Single subpathway

Subgraph of the pathway including only one input and one output node

Marta R. Hidalgo

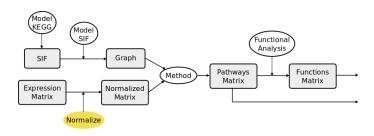
Signaling pathway
Databases

eprocess

Modeling KEGG Subpathways Normalization

lethod

Computing the signal Functional annotation Further analysis


Signaling pathwa Databases Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Signaling pathways
Databases

Preprocess

Modeling KEGO Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

xercises

The expression matrix is normalized to [0,1]

Options

- ▶ By quantiles: a quantiles normalization is performed
- ▶ By gene: the normalization is performed by rows
- ▶ Percentil: normalize taking the percentil

Method

Signaling pathways analysis

Marta R. Hidalgo

Signaling pathways

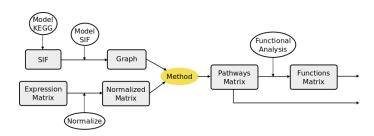
Databases Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation


Signaling pathwa Databases Pathway methods

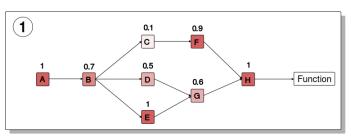
reprocess

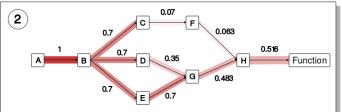
Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

bignaling pathwa Databases Pathway methods


reprocess


Modeling KEGG Subpathways Normalization

/lethod

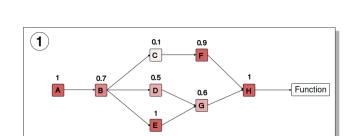
Computing the signal Functional annotation Further analysis

vorciono

percentil 10

Marta R. Hidalgo

Databases
Pathway methods


reprocess

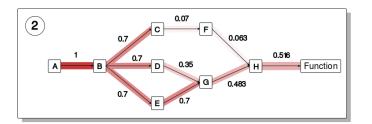
Modeling KEGG Subpathways Normalization

1ethod

Computing the signal Functional annotation Further analysis

xercises

Plain nodes: Percentil 90 of the genes included
 Complex nodes: Compute value of each node, take


$$S_n = v_n \cdot (1 - \prod_{s_i \in A} (1 - s_i)) \cdot \prod_{s_i \in I} (1 - s_j)$$

 S_n : Signal value through n

vn: Node value

A: Activation edges

1: Inhibition edges

Marta R. Hidalgo

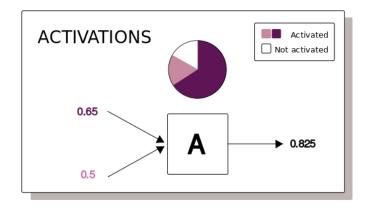
Signaling pathway Databases

reprocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

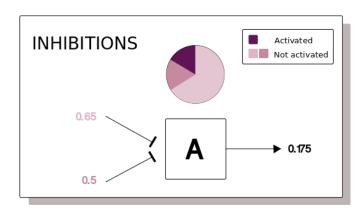

Dignaling pathway
Databases
Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

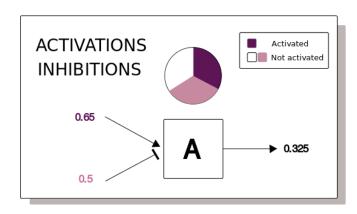

Dignaling pathway
Databases
Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis


Dignaling pathway
Databases
Pathway methods

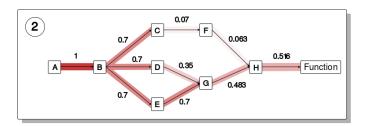
reprocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

▶ Input signal 1 in any input node

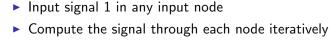

Signaling pathway
Databases

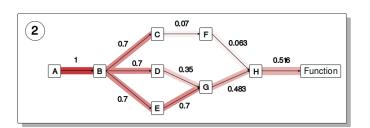
Prenrocess

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

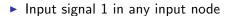

- Signaling pathwa Databases
- Preprocess

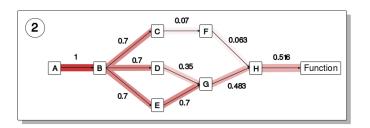

Modeling KEGG Subpathways Normalization

/lethod

Computing the signal Functional annotation Further analysis

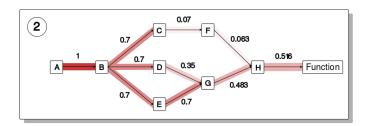
-vorcicos




- Signaling pathwa Databases
- Preprocess
- Modeling KEGG
- Subpathways Normalization
- /lethod

Computing the signal Functional annotation Further analysis

Evercises



- Compute the signal through each node iteratively
- ► Loops can be processed

Signal values

- ▶ Input signal 1 in any input node
- Compute the signal through each node iteratively
- ► Loops can be processed
- ► Subpathway signal: last node signal

Marta R. Hidalgo

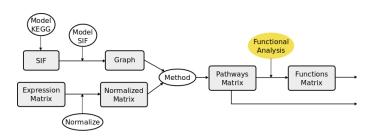
Signaling pathwa Databases Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

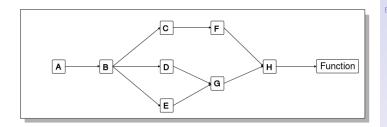
1ethod

Computing the signal Functional annotation Further analysis


Signaling pathwa
Databases

reprocess

Modeling KEGG Subpathways Normalization


/lethod

Computing the signal Functional annotation Further analysis

Subpathway function \sim Effector protein function

- KEGG annotation
- Uniprot keywords
- ► GO annotation

Signaling pathways Databases

Patnway methods

reprocess

Modeling KEGG Subpathways Normalization

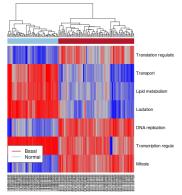
/lethod

Computing the signal Functional annotation Further analysis

Heatmap

Marta R. Hidalgo

Signaling pathwa
Databases
Pathway methods


reprocess

Modeling KEGG Subpathways Normalization

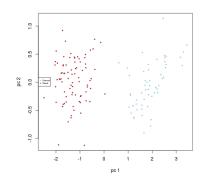
Method

Computing the signal Functional annotation Further analysis

Evercise

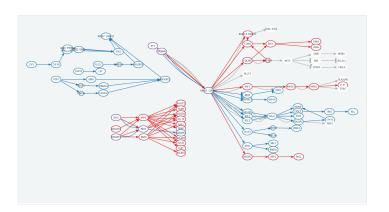
HeatmapPCA

- Marta R. Hidalgo
- Signaling pathwa Databases


reprocess

Modeling KEGG Subpathways Normalization

Method


Computing the signal Functional annotation Further analysis

Exercise

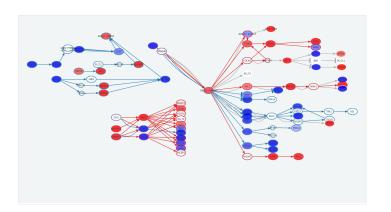
Further analysis

- Heatmap
- ► PCA
- ► Compare groups: Wilcoxon

Marta R. Hidalgo

Signaling pathwa Databases

reprocess


Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Further analysis

- ▶ Heatmap
- ► PCA
- ► Compare groups: Wilcoxon

$\mathsf{Marta}\ \mathsf{R}.\ \mathsf{Hidalgo}$

Signaling pathwa Databases

Preprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis

Exercises

Signaling pathways analysis

Marta R. Hidalgo

Signaling pathway

Databases Pathway methods

reprocess

Modeling KEGG Subpathways Normalization

Method

Computing the signal Functional annotation Further analysis