

Introduction to NGS Technologies

Javier Santoyo López

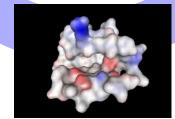
Andalusian Human Genome Sequencing Centre (CASEGH) Medical Genome Project (MGP) Sevilla, Spain

> javier.santoyo@juntadeandalucia.es http://www.medicalgenomeproject.com/

Genetic Research

Genes in the DNA...

...code for proteins...



...produces the final phenotype

>protein kinase

acctgttgatggcgacagggactgt atgctgatctatgctgatgcatgcat gctgatctatggtgggggctattg acttgatgtctatc.... From genotype to phenotype.

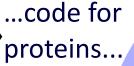
...whose structure accounts for function...

...plus the environment...

GOBIERNO

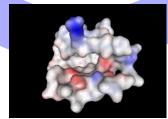
DE ESPAÑIA

DE CIENCIA



Genetic Research

Genes in the DNA...



...produces the final phenotype

>protein kinase

acctgttgatggcgacagggactgt atgctgatctatgctgatgcatgcat gctgatctatggtgggggctattg acttgatgtctatc.... From genotype to phenotype.

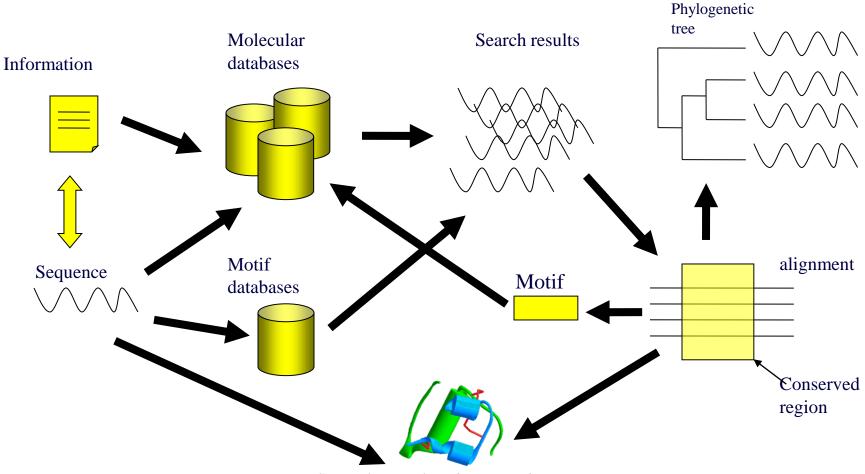
...whose structure accounts for function...

...plus the environment...

Data is information

DE CIENCIA

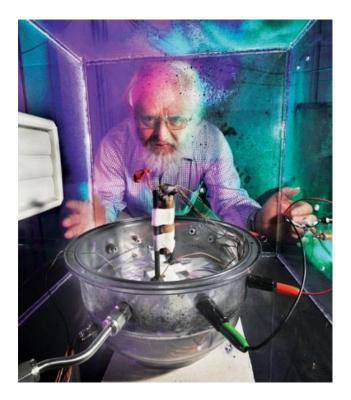
'Una manera de hacer Europa



GOBIERNO DE ESPAÑA E INNOVACIÓN

Bioinformatics tools for pre-genomic sequence data analysis

Secondary and tertiary protein structure



MINISTERIO DE CIENCIA

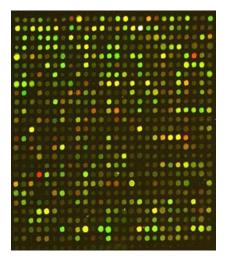
GOBIERNO DE ESPAÑA

The aim:

Extracting as much information as possible for one single data

> MINISTERIO DE CIENCIA

GOBIERNO DE ESPAÑA



High Throughput Technologies

- 1988 arrayed DNAs were used
- 1991 oligonucleotides are synthesized on a glass slide through photolithography (Affymax Research Institute)
- 1995 DNA Microarrays
- 1997 Genome wide Yeast Microarray

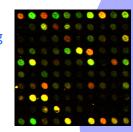
Nature Milestones DNA Technologies

Next Generation Sequencing 600 Gbp per run

Genes in the **DNA**...

...which can be different because of the variability.

10 million SNPs


...whose final effect configures the phenotype...

>protein kunase

acctgttgatggcgacagggactgtatgct gatctatgctgatgcatgcatgctgactact gatgtgggggctattgacttgatgtctatc...

...when expressed in the proper moment and place...

A typical tissue is expressing among 5,000 and 10,000 genes

From genotype to phenotype.

(in the functional post-genomics scenario)

...code for proteins...

That undergo posttranslational modifications, somatic recombination...

100K-500K proteins ...whose structures account for function...

....conforming complex interaction networks...

Each protein has an average of 8 interactions

... in cooperation with other proteins...

Next Generation Sequencing SOLID **12Gbp** per round

Genes in the DNA...

Data

Information

...which can be different because of the variability.

10 million SNPs

...whose final effect configures the phenotype...

>protein kunase

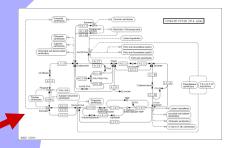
acctgttgatggcgacagggactgtatgct gatctatgctgatgcatgcatgctgactact gatgtgggggctattgacttgatgtctatc...

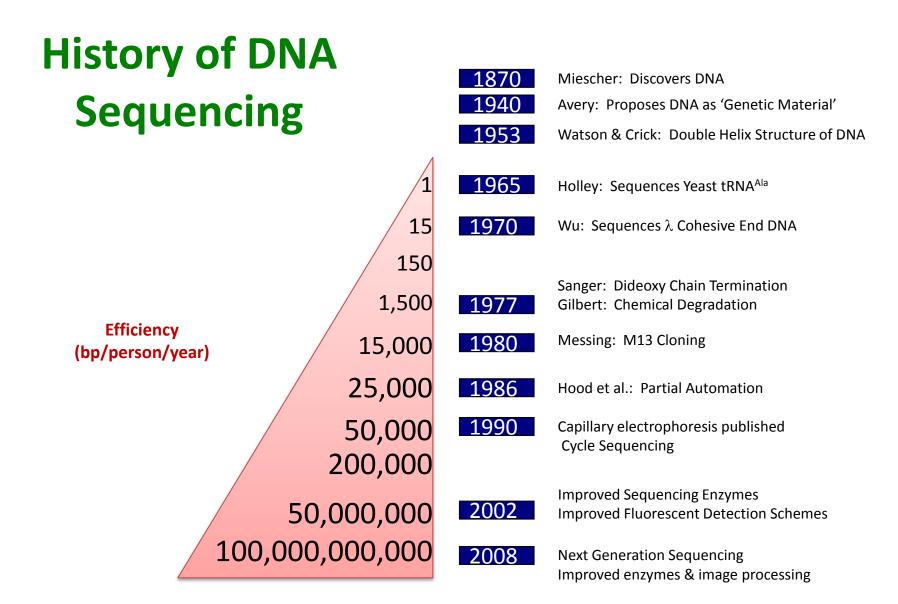
...when expressed in the proper moment and place...

A typical tissue is expressing among 5,000 and 10,000 genes

...code for proteins...

That undergo posttranslational modifications, somatic recombination...


100K-500K proteins ...whose structures account for function...


'Una manera de hacer Europa

...conforming complex interaction networks...

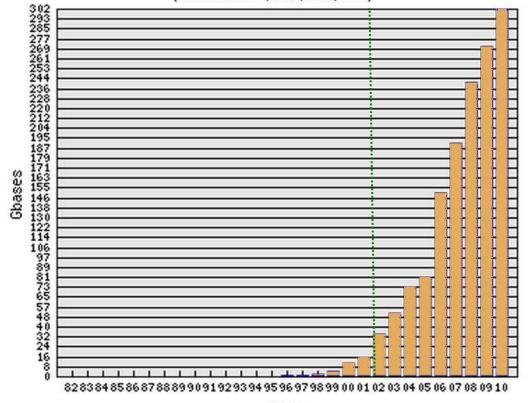
Each protein has an average of **8** interactions

...in cooperation with other proteins...

Adapted from Eric Green, NIH; Adapted from Messing & Llaca, PNAS (1998)

GOBIERNO DE ESPAÑA E INNOVACIÓ

Date	Cost per Mb	Cost per Genome	Date	Cost per Mb	Cost per Genome
Sep-01	\$5,292.39	\$95,263,072	Jul-07	\$495.96	\$8,927,342
Mar-02	\$3,898.64	\$70,175,437	Oct-07	\$397.09	\$7,147,571
Sep-02	\$3,413.80	\$61,448,422	Jan-08	\$102.13	\$3,063,820
Mar-03	\$2,986.20	\$53,751,684	Apr-08	\$15.03	\$1,352,982
Oct-03	\$2,230.98	\$40,157,554	Jul-08	\$8.36	\$752,080
Jan-04	\$1,598.91	\$28,780,376	Oct-08	\$3.81	\$342,502
Apr-04	\$1,135.70	\$20,442,576	Jan-09	\$2.59	\$232,735
Jul-04	\$1,107.46	\$19,934,346	Apr-09	\$1.72	\$154,714
Oct-04	\$1,028.85	\$18,519,312	Jul-09	\$1.20	\$108,065
Jan-05	\$974.16	\$17,534,970	Oct-09	\$0.78	\$70,333
Apr-05	\$897.76	\$16,159,699	Jan-10	\$0.52	\$46,774
Jul-05	\$898.90	\$16,180,224	Apr-10	\$0.35	\$31,512
Oct-05	\$766.73	\$13,801,124	Jul-10	\$0.35	\$31,125
Jan-06	\$699.20	\$12,585,659	Oct-10	\$0.32	\$29,092
Apr-06	\$651.81	\$11,732,535	Jan-11	\$0.23	\$20,963
Jul-06	\$636.41	\$11,455,315	Apr-11	\$0.19	\$16,712
Oct-06	\$581.92	\$10,474,556	Jul-11	\$0.12	\$10,497
Jan-07	\$522.71	\$9,408,739	Oct-11	\$0.09	\$7,743
Apr-07	\$502.61	\$9,047,003	Jan-12	\$0.09	\$7,666



National Human Genome Research Institute

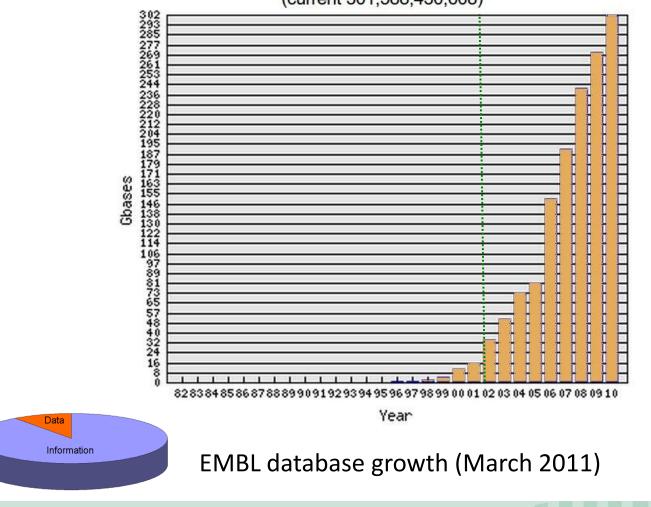
genome.gov/sequencingcosts

Pre & Post-genomic databases

Total nucleotides (current 301,588,430,608)

Year

EMBL database growth (March 2011)



MINISTERIO DE CIENCIA

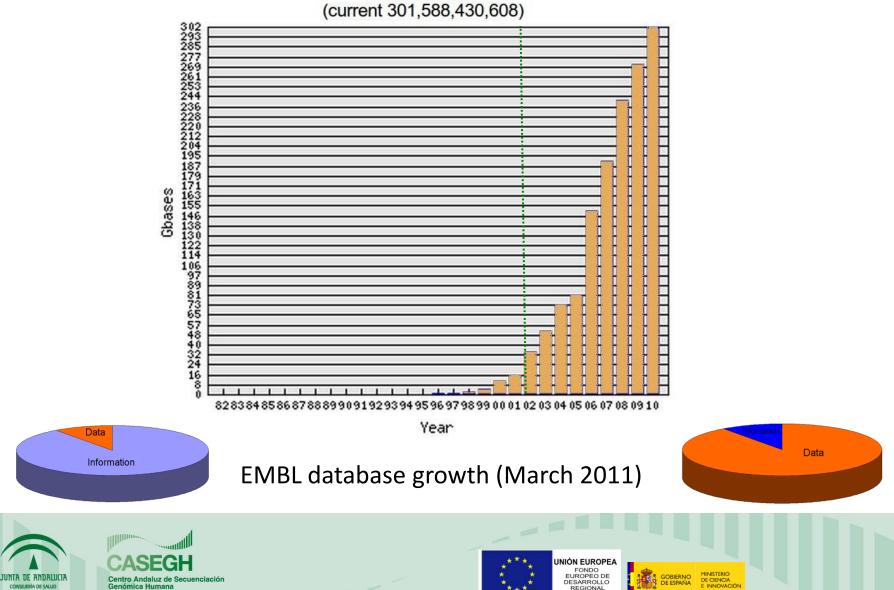
E INNOVACIÓ

Pre & Post-genomic databases

Total nucleotides (current 301,588,430,608)

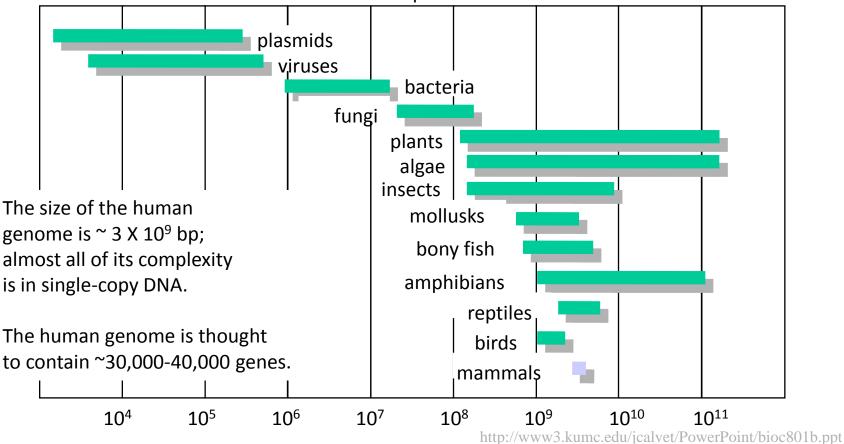
ca Humana

MINISTERIO DE CIENCIA


E INNOVACIÓ

GOBIERNO DE ESPAÑA

"Una manera de hacer Europa

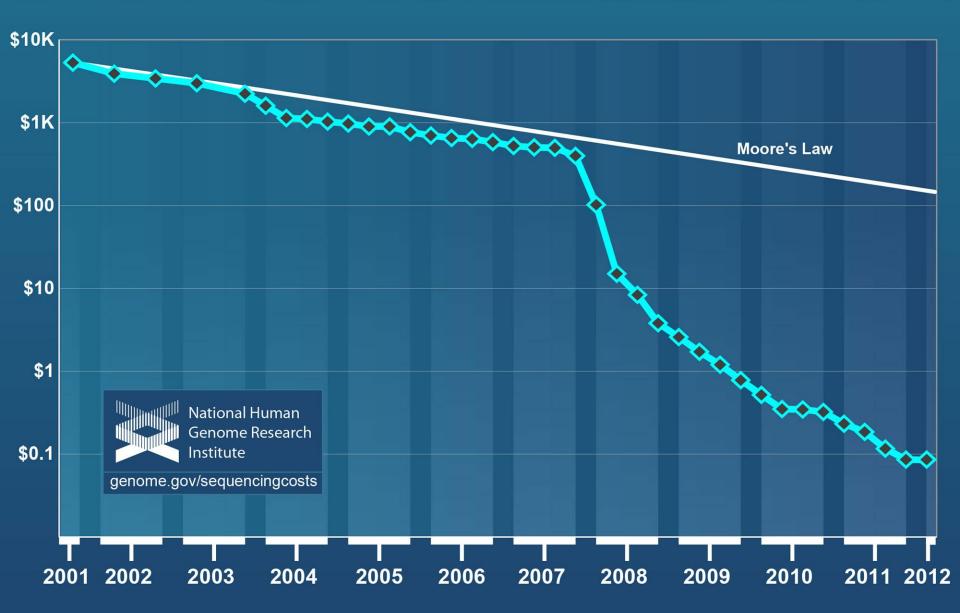

Pre & Post-genomic databases

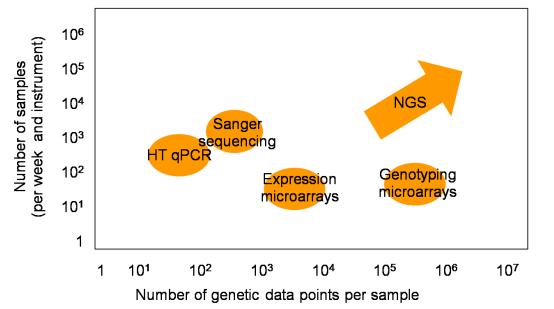
Total nucleotides

"Una manera de hacer Europa

Genome sizes in nucleotide base pairs

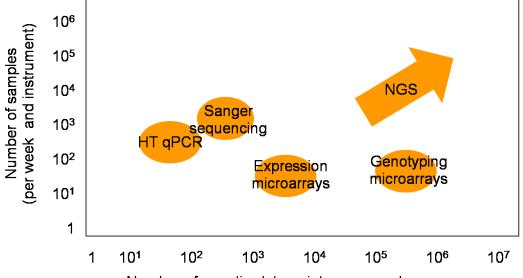
Computing capabilities (*CPU power doubles in ~18-24 moths, hard drive capacity doubles in ~12 moths, network bandwidth doubles in ~20 moths*) should increase : **7-10x** in 5 years. Follows **Moors's law**


Data projection in 3-5 years: **100x** increase in sequencing volume. Still new technologies with higher throughput to come very soon !!!



Cost per Raw Megabase of DNA Sequence

Relative throughput of the different HT technologies


NGS emerges with a potential of data production that will, eventually wipe out conventional HT technologies in the years coming

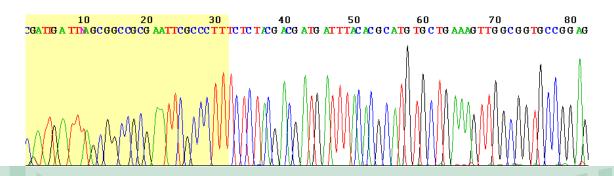
Relative throughput of the different HT technologies

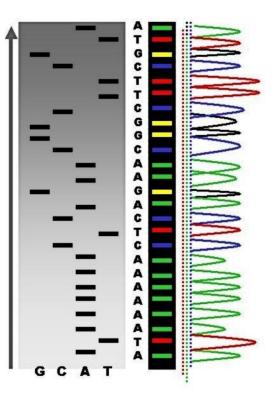
NGS emerges with a potential of data production that will, eventually wipe out conventional HT technologies in the years coming

Number of genetic data points per sample

DE CIENCIA

Too many sequences to be handled in a standard computer





Basics of the "old" technology

- •Clone the DNA.
- •Generate a ladder of labeled (colored) molecules that are different by 1 nucleotide.
- •Separate mixture on some matrix.
- •Detect fluoroscope by laser.
- •Interpret peaks as string of DNA.
- •Strings are 500 to 1,000 letters long
- •1 machine generates 57,000 nucleotides/run
- •Assemble all strings into a genome.

na manera de hacer Europa

Basics of the "new" Technology

- \rightarrow Get DNA.
- \rightarrow Attach it to something.
- \rightarrow Extend and amplify signal with some color scheme.
- ightarrow Detect fluorochrome by microscopy.
- \rightarrow Interpret series of spots as short strings of DNA.
- ightarrow Strings are 30-250 letters long
- \rightarrow Multiple images are interpreted as 0.4 to 1.2 GB/run/day (1,200,000,000 letters/day).
- ightarrow Map or align strings to one or many genome.

	Sanger (1st-gen) Sequencing	Next-Gen Sequencing, and 3 rd generation
Whole Genome	Human (early drafts), model organisms, bacteria, viruses and mitochondria (chloroplast), low coverage	New human (!), individual genome, exomes, 2,500 normal (1K genome project), 25,000 cancer (TCGA and ICGC initiatives), CNV, matched control pairs, time course, rare- samples
RNA	cDNA clones, ESTs, Full Length Insert cDNAs, other RNAs	RNA-Seq: Digitization of transcriptome, alternative splicing events, miRNA, allele specific transcripts
Communities	Environmental sampling, 16S RNA populations, ocean sampling,	Human microbiome, deep environmental sequencing, Bar- Seq
Other		Epigenome, rearrangements, ChIP-Seq

NGS technologies

Cost-effective Fast Ultra throughput Cloning-free Short reads

ion torrent

by life technologies"

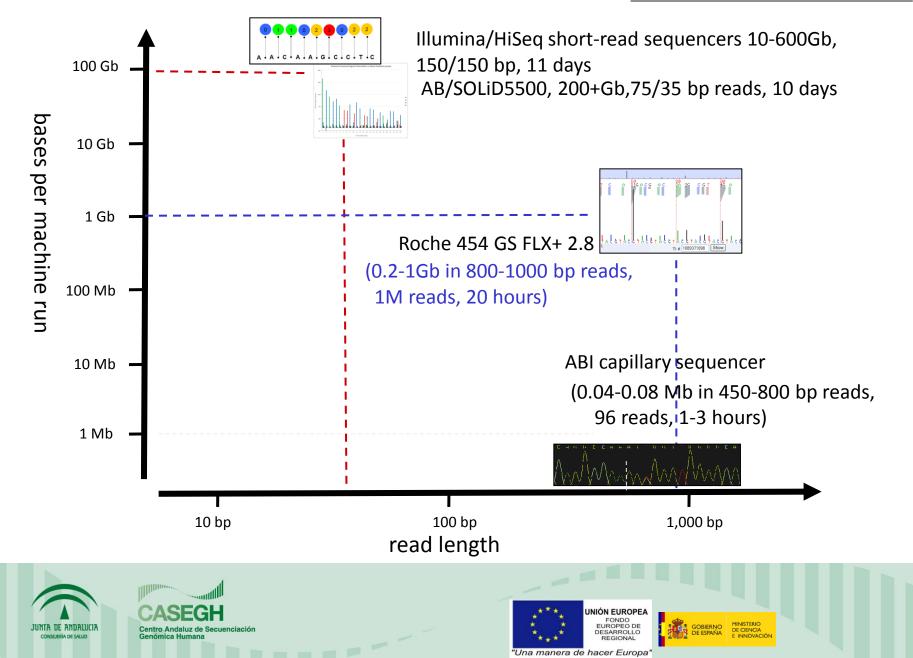
GOBIERNO DE ESPAÑA E INNOVAC

Differences between the various platforms:

- Nanotechnology used.
- Resolution of the image analysis.
- Chemistry and enzymology.
- Signal to noise detection in the software
- Software/images/file size/pipeline
- Cost

Similarities- LOTS of DATA General ways of dealing at the sequences

- Assemble them and look at what you have
- You map them (align against a known genome) and then look at what you have.
- Or a mixture of both!
- Sometimes you select the DNA you are sequencing
- or you try to sequence everything
- Depends on biological question, sequencing machine you have, and how much time and money you have.
- NGS is relatively cheap but think what you want to answer, because the analysis won't do magic



Next-gen sequencers

From John McPherson, OICR

Next Generation Sequencers

3 main platforms:

- Solexa/illumina
- Roche 454
- ABI SOLiD

•Follow an approach similar to Sanger sequencing, but do away with separation of fragments by size and "read" the sequence as the reaction occurs

•Several different "next generation" sequencing platforms developed and commercialized, more on the way.

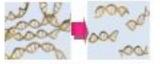
•Simultaneously sequence entire libraries of DNA sequence fragments

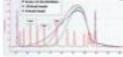
454 (Roche)

First next generation method to be commercially available

Uses a "sequencing by synthesis" approach:

- DNA is broken into pieces of 500-1,400 bp, ligated to adaptors, and amplified on tiny beads by PCR (emulsion PCR)
- Beads (with DNA attached) are placed into tiny wells (one bead per well) on a PicoTiter Plate that has millions of wells. Each well is connected to an optical fibre.
- DNA is sequenced by adding polymerase and DNA bases containing pyrophosphate. The different bases (A,C,G,T) are added sequentially in a flow chamber
- When a base complementary to the template is added, the pyrophosphate is released and a burst of light is produced
- The light is detected and used to call the base
- Initially 100-150 bp, but they have been improved to 600-1000 bp
- >1 million, filter-passed reads per run (20 hours)
- 1 billion bases per day




Roche 454 pyrosequencing

Principel

Preparation of the DNA includes : DNA fragmentation (nebulization), DNA size selection, Fragment end polishing, Adaptor ligation, Library immobilization, fill in reaction and ssDNA library isolation. At the end of these steps, the DNA fragments are ready for the emulsion PCR (emPCR).

fragmentation

size selection

Adaptor ligation

Alter in

1000	2
	2000
Immobiliz	ation

Fill in reaction

ssDNA library isolation

emPCR include the immobilisation of the DNA fragments on capture beads (1 molecule / bead), emulsification (1bead / aqueous microreactor), amplification and indirect enrichment resulting in an immobilized and amplified library.

amplification

Indirect enrichment : melt, enrichment with biotinilated primer, streptavidin magnetic beads, enrich and melt

Sequencing includes a prewash, the loading DNA library beads, enzyme beads (PPiase) and packing beads on the picotiter plate (PTP). Run over night. At the end of these steps you get your data.

on capture beads

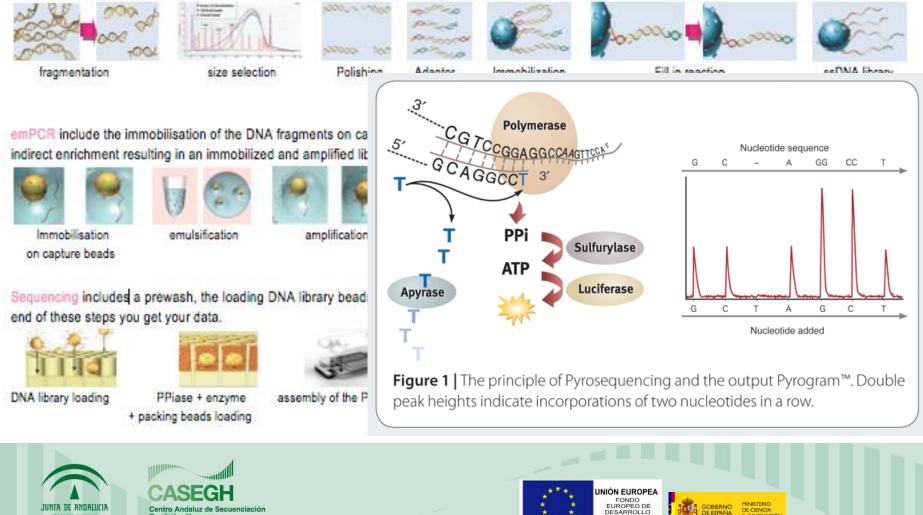
emulsification

DNA library loading

PPiase + enzyme

+ packing beads loading

assembly of the PTP



"Una manera de hacer Europa"

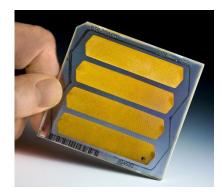
Roche 454 pyrosequencing

Principel

Preparation of the DNA includes : DNA fragmentation (nebulization), DNA size selection, Fragment end polishing, Adaptor ligation, Library immobilization, fill in reaction and ssDNA library isolation. At the end of these steps, the DNA fragments are ready for the emulsion PCR (emPCR).

DESARROLLO REGIONAL

"Una manera de hacer Europa"


Roche / 454 : GS FLX

- Good for
 - "de novo" sequencing (longer reads).
 - Resequencing (expensive)
 - New bacterial genomes.
 - Amplicons
- Pyrosequencing. Bias with long polinucleotide streches

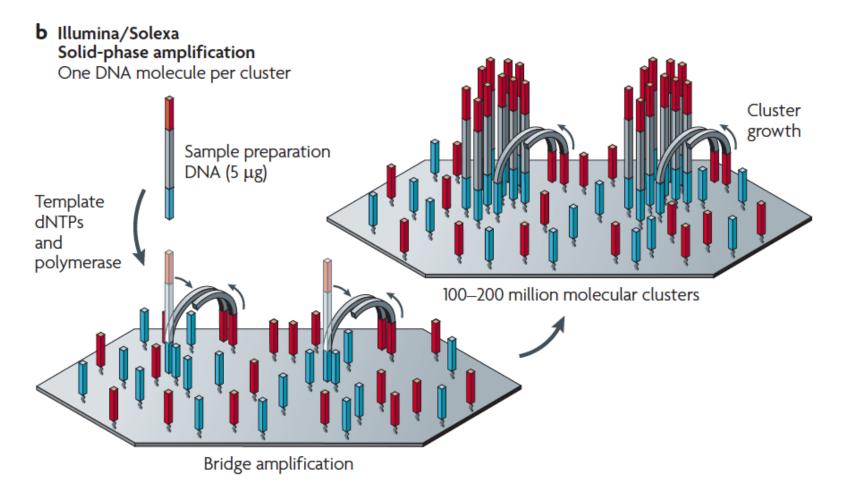
Roche 454

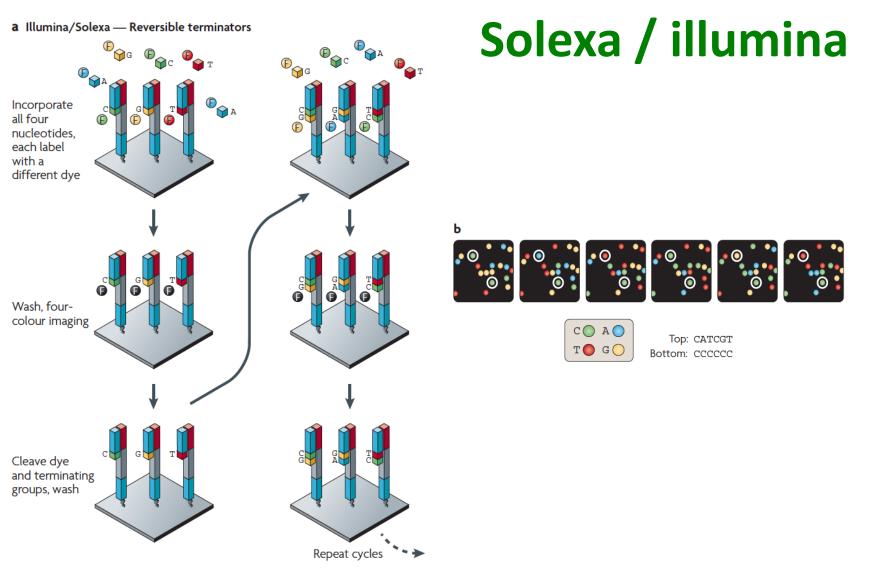
Throughput	400-600 million high-quality, filter-passed bases per run* 1 billion bases per day
Run Time	10 hours
Read Length	Average length = 400 bases
Accuracy	Q20 read length of 400 bases (99% at 400 bases and higher for prior bases)
Reads per run	>1 million high-quality reads
Data	Trace data accepted by NCBI since 2005
Computing Requirements	Cluster recommended (Roche GS FLX Titanium Cluster available)
Robustness	No complex optics or lasers; reagents have long shelf life

GS Junior, benchtop

System Performance	
Throughput	35 million high-quality, filtered bases per run*
Run Time	10 hours sequencing 2 hours data processing
Avg. Read Length	400 bases*
Accuracy	Q20 read length of 400 bases (99% accuracy at 400 bases)
Reads per Run	100,000 shotgun, 70,000 amplicon
Sample Input	gDNA, amplicons, cDNA, or BACs depending on the application
Physical Dimensions	40 cm wide x 60 cm deep x 40 cm high (the size of a laser printer) Weight = 55 lbs.
Computing	Linux-based OS on HP desktop computer included. All software is point-and-click.
*Typical results. Average read length and number of reads depend on specific sample and genomic characteristics	

Solexa (Illumina)

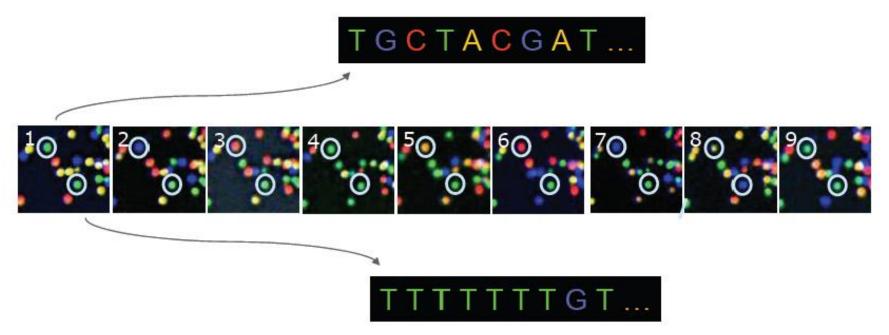

- •Over 90% of all sequencing data is produced on Illumina systems.
- •Uses a "sequencing by synthesis" approach:
 - DNA is broken into small fragments and ligated to an adaptor.
 - The fragments are attached to the surface of a flow cell and amplified.
 - DNA is sequenced by adding polymerase and labeled reversible terminator nucleotides (each base with a different color).
 - The incorporated base is determined by fluorescence.
 - The fluorescent label is removed from the terminator and the 3' OH is unblocked, allowing a new base to be incorporated
- •Started with 35 bp, increased now to up to 150 bp
- •One run can give up to 10-600 Gb, 300-6000 million paired-end reads
- •75-85% of bases at or above Q30



Solexa / illumina

From Michael Metzker, http://view.ncbi.nlm.nih.gov/pubmed/19997069

From Michael Metzker, http://view.ncbi.nlm.nih.gov/pubmed/19997069



Solexa / illumina

Base calling from raw data

From Debbie Nickerson, Department of Genome Sciences, University of Washington, http://tinyurl.com/6zbzh4

The identity of each base of a cluster is read off from sequential images

Illumina-HiSeq 2500

MINISTERIO DE CIENCIA

GOBIERNO DE ESPAÑA

600 Gb/run in 11 days2x100 bp fragments6 billion reads per run

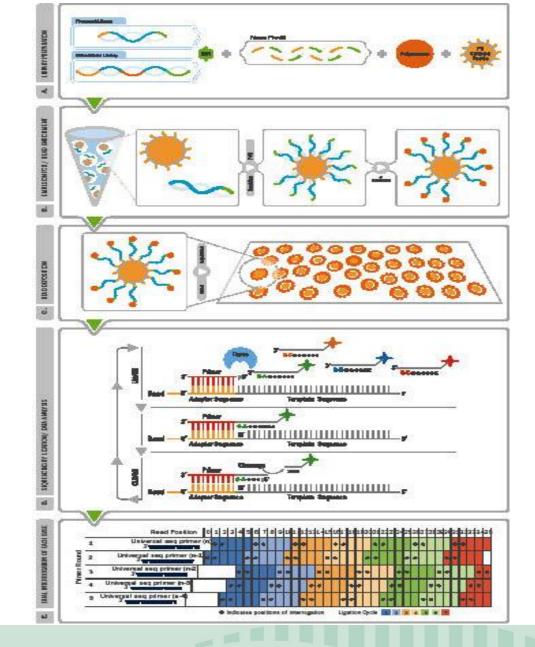
"Una manera de hacer Europa"

Illumina-MiSeq

175-245 Mb 4h 1x 36bp

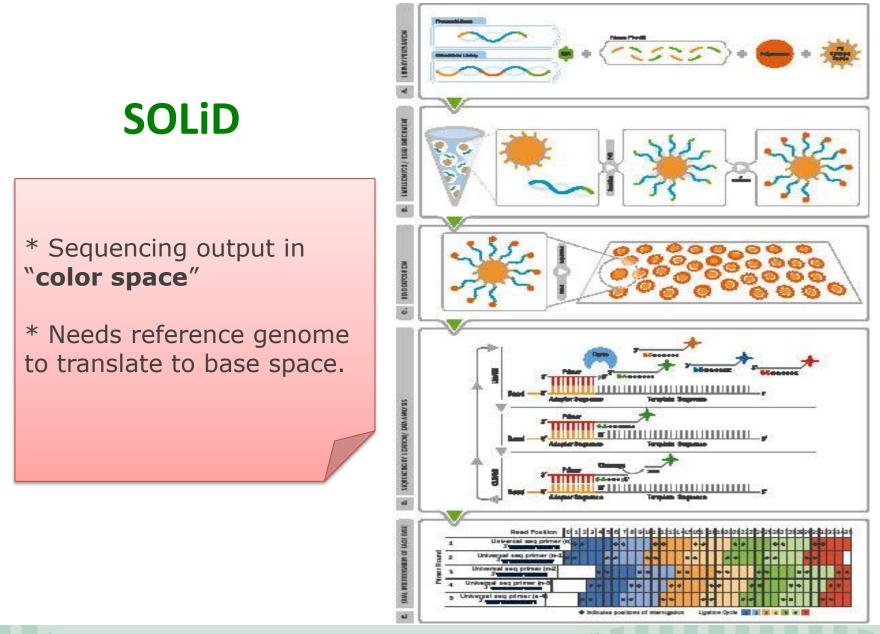
1.5-2.0 Gb 27h 2x150 bp

SOLiD (ABI / Life Technologies)

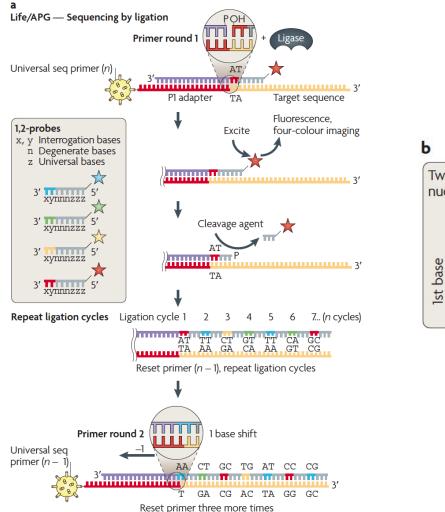

•Colorspace

- •"sequencing by ligation" method
- •Does not use polymerase, instead uses DNA ligase for sequencing:
 - DNA is broken into small fragments and ligated to an adaptor.
 - The fragments are attached to beads and amplified by emulsion PCR. Beads are attached to the surface of a glass slide.
 - DNA is sequenced by adding 8-mer fluorescently labelled oligonucleotides
 - If an oligo is complementary to the template, it will be ligated and 2 of the bases can be called.
 - The attached oligo is then cut to remove the label and the next set of labelled oligos are added
 - The process is repeated from different starting points (using different universal primers) so that each base is called twice

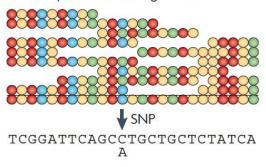
•200 Gb, 1.8 billion reads per run, 35bp-75bp, 10 days



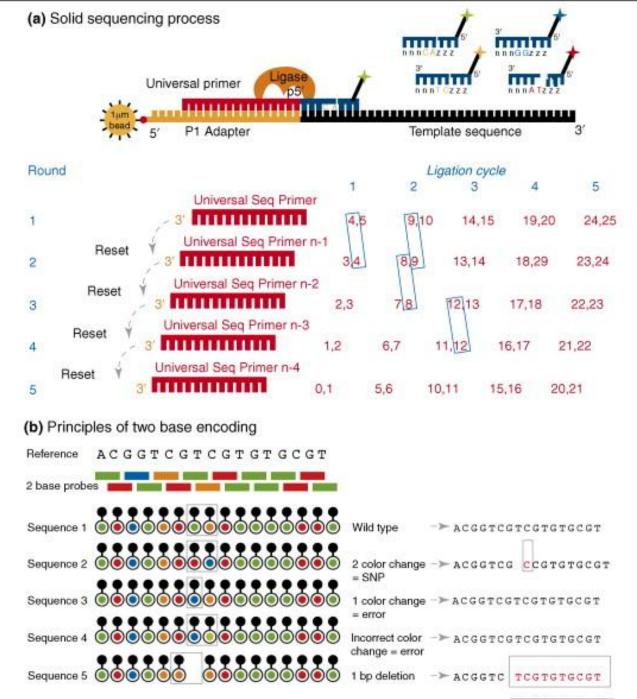
"Una manera de hacer Europa'






"Una manera de hacer Europa"

SOLiD


Alignment of colour-space reads to colour-space reference genome

From Michael Metzker, http://view.ncbi.nlm.nih.gov/pubmed/19997069

TRENDS in Genetics

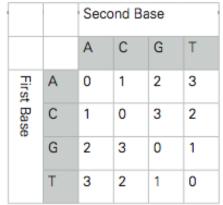
SOLiD color space

Use the following steps to encode a DNA sequence ATCAAGCCTC*:

- 1. start at the 5' end,
- replace the di-base AT at this position with its corresponding code 3 from the table,
- 3. advance by one base, which exposes the TC di-base, and
- 4. continue, as shown below.

Base Sequence: A T C A A G C C T C Color String: 3 2 1 0 2 3 0 2 2

SOLiD_Dibase_Sequencing_and_Color_Space_Analysis.pdf



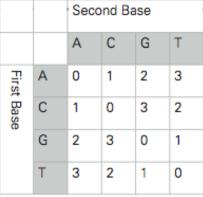
Union of Biochemistry) codes. So let B = {A, C, G, T}. The color code should satisfy the following requirements:

For all bases b, d, e in B:

- The available colors are 0, 1, 2, and 3: color (*bd*) ∈ {0, 1, 2, 3}.
- 2 Two different di-bases that have the same first base get different colors: color (bd) ≠ color (be) if d ≠ e. For example, color (AC) ≠ color (AG).
- A di-base and its reverse get the same color: color (bd) = color (db).
 For example, color (AC) = color (CA).
- Monodibases get the same color: color (bb) = color (dd).

Panel E

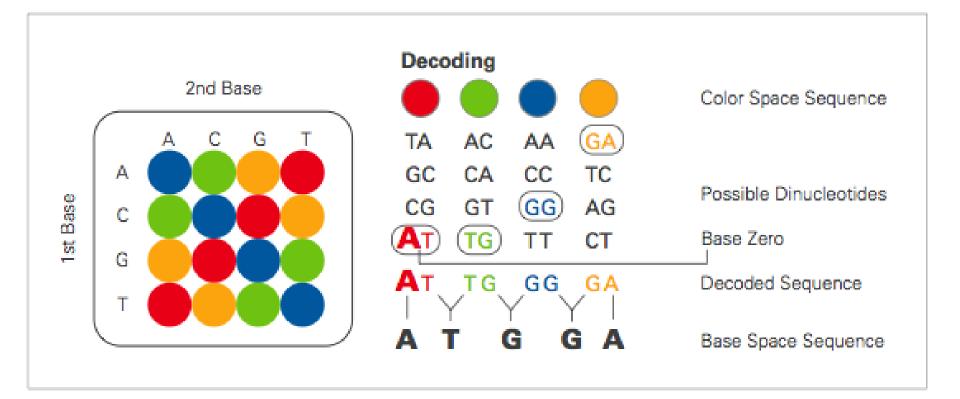
SOLiD_Dibase_Sequencing_and_Color_Space_Analysis.pdf



 Two different di-bases that nevertheless have the same second base get *different* colors: color (*bd*) ≠ color (*cd*), if b ≠ c.

For example, color (AC) ≠ color (TC). Property 6 also follows from requirements 1-4, but it is most easily verified against the completed code (Figure 3, Panel E).

A di-base and its complement get the same color:
 color (b^cd^c) = color (d^cb^c).
 For example, color (AC) = color (TG).



Panel E SOLiD_Dibase_Sequencing_and_Color_Space_Analysis.pdf

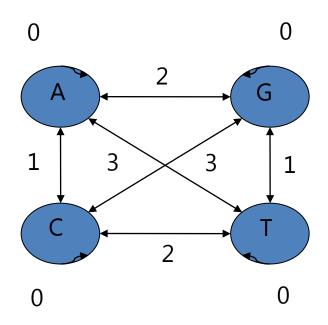
SOLiD color space

 ${\tt SOLiD_Dibase_Sequencing_and_Color_Space_Analysis.pdf}$

Its format is >TAG_ID Color_space

e.g.

>1_88_1830_R3 G32113123201300232320 >1_89_1562_R3 G23133131233333101320



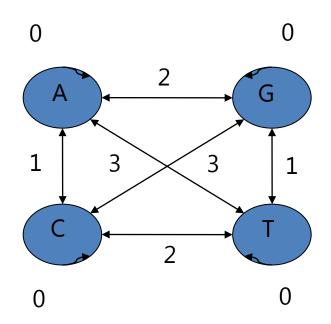
GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA

AB SOLiD: Dibase Sequencing AB SOLiD reads look like this: T012233102 T012033102

	A	С	G	Т
Α	0	1	2	3
С	1	0	3	2
G	2	3	0	1
Т	3	2	1	0

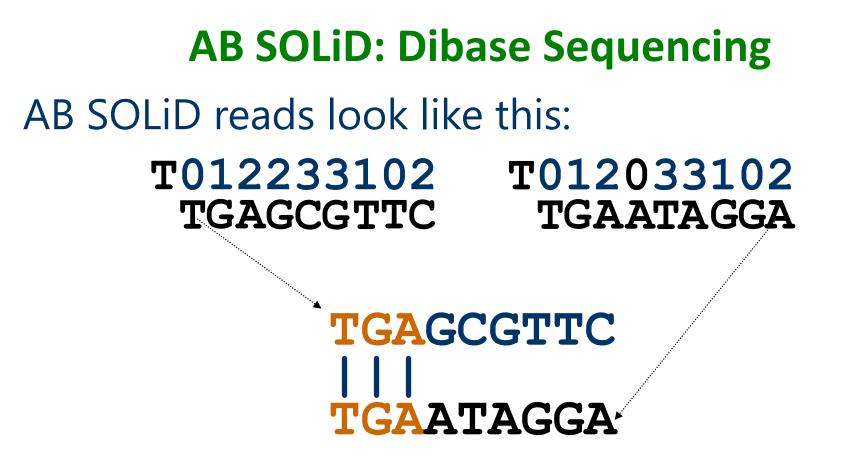
DE CIENCIA

Mike Brudno, U of Toronto http://bioinformatics.ca/files/CBW - presentations/HTSeq_2009_Module 2/HTSeq_2009_Module 2.ppt



AB SOLiD: Dibase Sequencing AB SOLiD reads look like this: T012233102 TGAGCGTTC T012033102 TGAATAGGA

	A	С	G	Т
Α	0	1	2	3
С	1	0	3	2
G	2	3	0	1
Т	3	2	1	0


DE CIENCIA

Mike Brudno, U of Toronto http://bioinformatics.ca/files/CBW - presentations/HTSeq_2009_Module 2/HTSeq_2009_Module 2.ppt

Mike Brudno, U of Toronto http://bioinformatics.ca/files/CBW - presentations/HTSeq_2009_Module 2/HTSeq_2009_Module 2.ppt

AB SOLiD: Variations

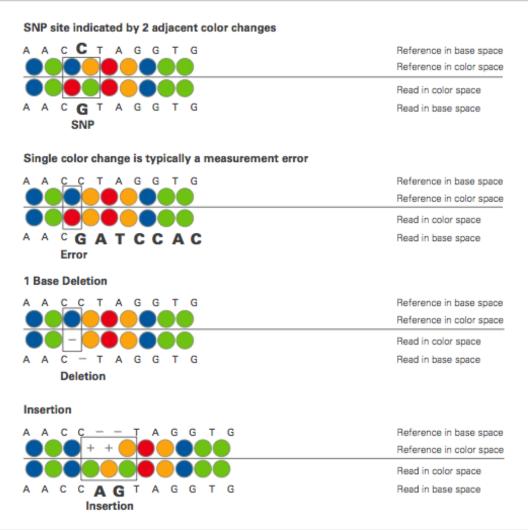


Figure 5. Examples of polymorphisms in color space.

SOLiD_Dibase_Sequencing_and_Color_Space_Analysis.pdf

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA

5500XL SOLiD

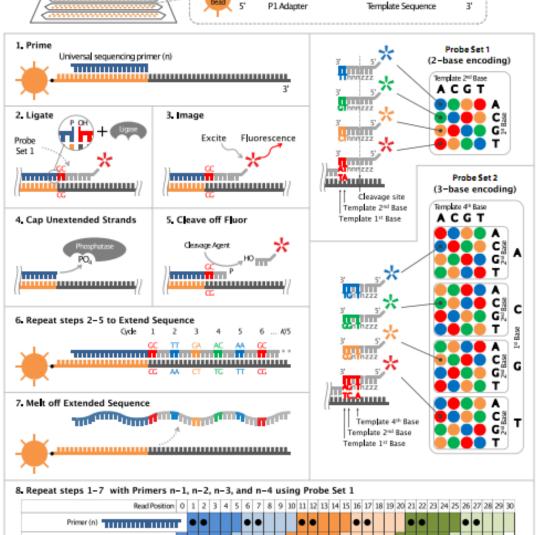
200 Gb/run (microbeads) 300 Gb/run (nanobeads)

35-75 bp fragments

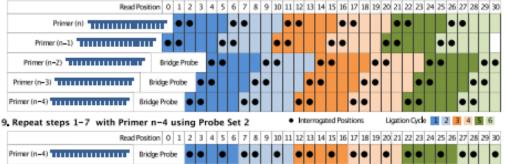
1.8 - 4.8 billion reads/run

2x6 lanes/run 96 bar-codes

ECC: 99.99% accuracy

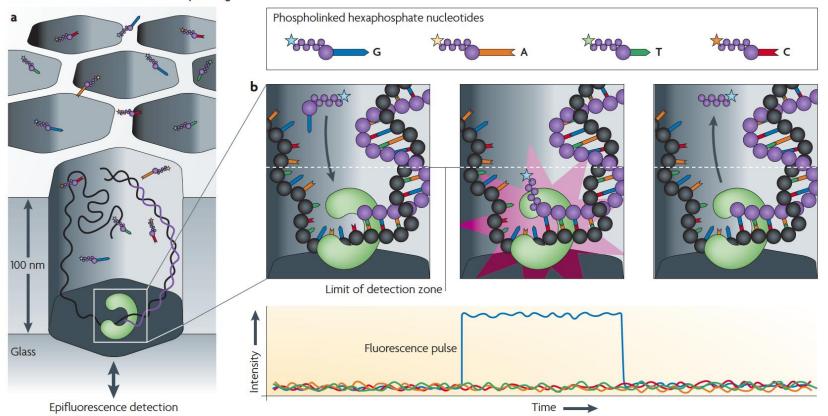

GOBIERNO DE ESPAÑA E INNOVACIÓ

SOLiD 5500


*Sixth 3-based encoded primer

*Sequencing output in base space

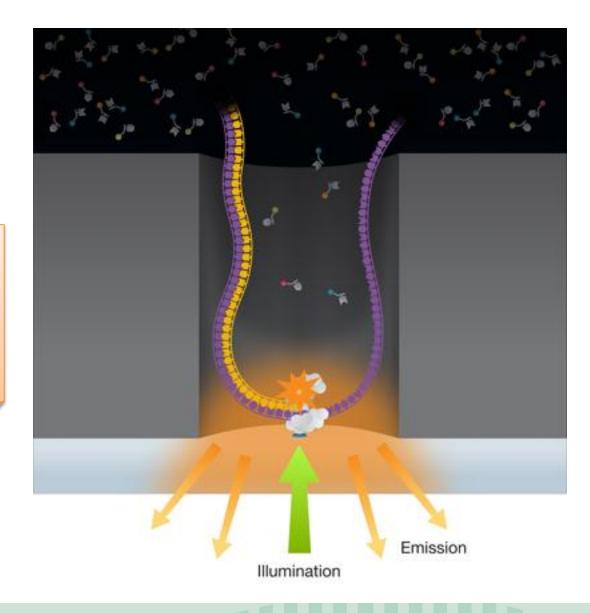
* No reference needed



1µm

PacBio

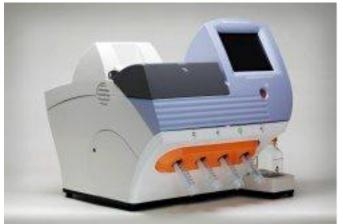
Pacific Biosciences — Real-time sequencing

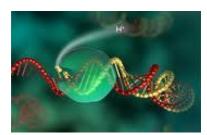

From Michael Metzker, http://view.ncbi.nlm.nih.gov/pubmed/19997069

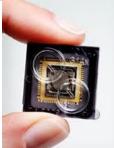
Pacific Bioscience

SMRT: Singel Molecule Real time DNA synthesis Up to 12000 nt 50 bases/second

ZMW: Zero Mode Waveguide







Ion Torrent

\$ 50.000
\$ 500 /sample
1 hour/run
> 200 nt lengths
Reads H+ released by DNA
polymerase

Ion Proton

ION TORRENT

Human-exome sequencing

Using the next generation of semiconductor technology, the Ion Proton™ I Chip will deliver whole-exome sequencing in just a few hours. "Cost, speed, and accuracy are key elements in the use of DNA sequencing. The technological advances in the new Ion Proton™ instrument promise to be game-changing for both research and clinical applications."

DR. RICHARD LIFTON VALE SCHOOL OF MEDICINE, USA

×

0

ION PROTON[™] SEQUENCER HUMAN GENOMES

HUMAN EXOMES WHOLE TRANSCRIPTOMES

Human-genome sequencing

The Ion Proton[®] II Chip will enable fast, affordable, whole-genome sequencing on your benchtop.

2-hour run times

Rapid 100-base sequencing runs on the Ion Proton" I Chip.

THE ONLY BENCHTOP GENOME CENTER

The Ion Proton[™] Sequencer* is based on the next generation of semiconductor sequencing technology that made the Ion PGM[™] Sequencer the fastest selling sequencer in the world. New high-throughput chips will enable the Ion Proton[™] Sequencer to sequence a human genome with similar run times, and single-day workflow, as the Ion PGM[™] Sequencer. Data analysis, which has long been a bottleneck for whole-genome sequencing, can also be completed in the same day on a single stand-alone server. In the time it takes for other systems to batch sequence 6 genomes, the Ion Proton[™] Sequencer can sequence and analyze 10 genomes for a small fraction of the cost.

ION PROTON" SEQUENCER

*The content provided herein may relate to products that have not been officially released and is subject to change without notice

OXFORD NANOPORE

The MinION is a memory key–sized disposable unit that can be plugged into a laptop for under \$1,000, according to the company.

MinION

11111

'Una manera de hacer Europa'

Oxford Nanopore

Comparison

Roche 454

•Long fragments

- •Errors: poly nts
- Low throughput

Expensive

•De novo sequencing •Amplicon sequencing •RNASeq

Illumina

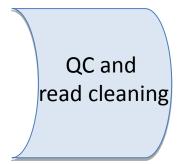
- Short fragmentsErrors: Hexamer bias
- •High throughput

Cheap

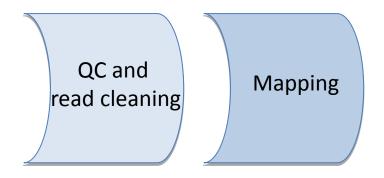
- Resequencing
- ChipSeq
- RNASeq
- MethylSeq

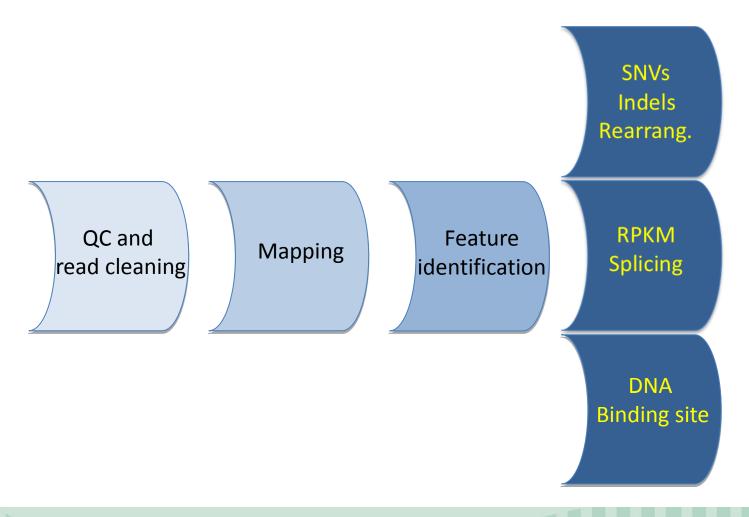
- Short fragments
- Color-space
- High throughputCheap

MINISTERIO DE CIENCIA


GOBIERNO DE ESPAÑA

- •Resequencing
- ChipSeq
- RNASeq
- MethylSeq





GOBIERNO DE ESPAÑA E INNOVACIÓN

"Una manera de hacer Europa"

File formats

AAATAAAAATATTTATTTAACTTCTAAACGATGTCGTT +ILLUMINA-GA_0000:1:1:4010:1065#0/1 հհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհ @ILLUMINA-GA_0000:1:1:4093:1065#0/1 AAATAACTAAGAAATTTGTCACAAATTTCTAAATTCTT +ILLUMINA-GA 0000:1:1:4093:1065#0/1 affffgegggaffccfd_ffcdfdfgffgcgggfgggg carbonell@bender:/scratch2/jcarbonell\$ head ivia15_06_pair2.remdup.fq -n 20 @ILLUMINA-GA 0000:1:1:1395:1061#0/2 GGACCAAGCAAGACAATGCTAAATTCTTTGCAGAGATA +ILLUMINA-GA_0000:1:1:1395:1061#0/2 hcaehghce Wffffffafa]ffcfgghgheahehWff @ILLUMINA-GA 0000:1:1:1855:1066#0/2 GTTAATTCCTTGTCGCCGTTTTATGTGATGCGCATCCA +ILLUMINA-GA 0000:1:1:1855:1066#0/2 ffffcffffdhhdfcfffdfff]cc``^`dfffcchha @ILLUMINA-GA_0000:1:1:3567:1062#0/2 GAGTCCGGCGGACGAACGTCGCCAGCCCCACCCCCA +ILLUMINA-GA 0000:1:1:3567:1062#0/2 hhhhhhhghhhhcgfccff]fdffS[efffchhhhhh @ILLUMINA-GA 0000:1:1:4010:1065#0/2 TTGTTTGACAGTTAATGATGGTCCTATTACATAACAGT +ILLUMINA-GA_0000:1:1:4010:1065#0/2 @ILLUMINA-GA_0000:1:1:4093:1065#0/2 ATCCAAGAGCAAACAAGTTGCCAAGAGATGCAAGGAC +ILLUMINA-GA 0000:1:1:4093:1065#0/2 dffffffhdhhhhggfhfhhcghg_fQfbbfffffdfa er:/scratch2/jcarbonell\$ ILLUMINA ILLUMINA 147 ILLUMINA ILLUMINA M:i:1 ILLUMINA ILLUMINA ILLUMINA ILLUMINA ILLUMINA

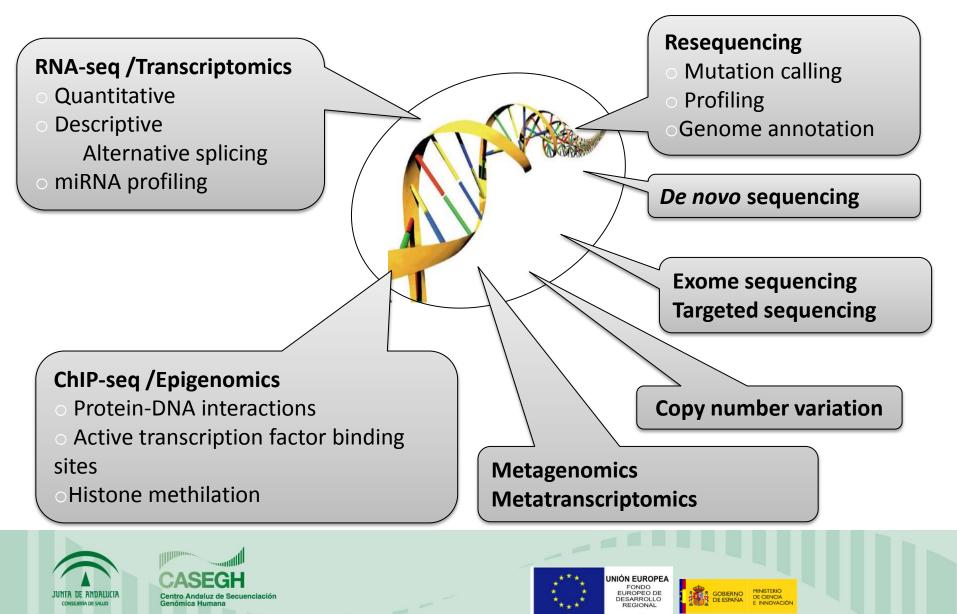
fastq: sequence data and qualities

SAM/BAM: mapping data and qualities

/scratch2/jcarbonell\$ samtools view ivial5 06 pairl.remdup bwa bwa ref01 upper mapped.bam

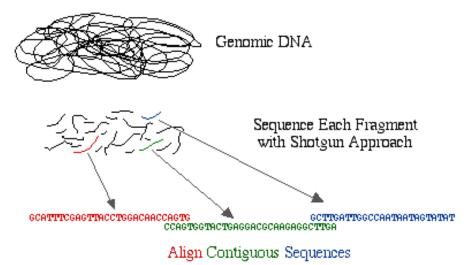
IA-GA_0000:1:1:1395:1061#0	99	scaffold_13	799896		38M	800074	216	AATAGANACCACATTGTAAAACTTTAGTCGCTGTTTTC	affffaBa``cc^ccfc_ffcffdffc[ffddbbdfcc	XT:A:R	NM:i:1	SM:i:O	AM:i:O	X0:i:261	
XO:i:O XG:i:O MD:Z:6A31															
IA-GA_0000:1:1:1395:1061#0	147	scaffold_13	800074		38M	799896	-216	TATCTCTGCAAAGAATTTAGCATTGTCTTGCTTGGTCC	ffWhehaehghggfcff]afaffffffW_echgheach	XT:A:R	NM:i:1	SM:i:O	AM:i:O	X0:i:3	X1:i:
XM:i:1 XO:i:0 XG:i:0 MD:2	Z:21C16														
IA-GA_0000:1:1:1855:1066#0	89	scaffold_65	576129		38M	576129		TTTTTTCTCTTCTTTGTGGCCATATTCTTCTTCCTT	cX]cffacW_`ccfff[ffggegfffd[fd]fcfffff	XT:A:R	NM:i:2	SM:i:O	AM:i:O	X0:i:2	Xl:i:
XM:i:2 XO:i:0 XG:i:0 MD:2															
IA-GA_0000:1:1:3567:1062#0	83	scaffold_215	8768		38M	8554	- 252	CCCCAAGGCTATAGCCCACCCGTTTTTTGGGNATTTTT	gfggggggfffffffffcgggggeeeeeeeBeggggg	XT:A:R	NM:i:1	SM:i:O	AM:i:O	X0:i:250	
XO:i:0 XG:i:0 MD:Z:31C6															
IA-GA_0000:1:1:3567:1062#0	163	scaffold_215	8554		38M	8768	252	TGAGTCCGGCGGACGAACGTCGCCAGCCCCACCCCCA	hhhhhhhghhhhcgfccff]fdffS[efffchhhhhh`	XT:A:R	NM:i:2	SM:i:O	AM:i:O	X0:i:4	Xl:i:
XM:i:2 XO:i:0 XG:i:0 MD:2															
IA-GA_0000:1:1:4010:1065#0	99	scaffold_76	865926	60	38M	866076	188	AAATAAAAATATTTATTTAACTTCTAAACGATGTCGTT	հհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհ	XT:A:U	NM:i:0	SM:i:37	AM:i:37	X0:i:1	Xl:i:
XM:i:0 XO:i:0 XG:i:0 MD:2															
IA-GA_0000:1:1:4010:1065#0	147	scaffold_76	866076	60	38M	865926	-188	ACTGTTATGTAATAGGACCATCATTAACTGTCAAACAA	ehfhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	XT:A:U	NM:i:2	SM:i:37	AM:i:37	X0:i:1	Xl:i:
XM:i:2 XO:i:0 XG:i:0 MD:2	Z:2C24A10														
IA-GA_0000:1:1:4093:1065#0	99	scaffold_57	479190	12	38M	479354	202	AAATAACTAAGAAATTTGTCACAAATTTCTAAATTCTT	affffgegggaffccfd_ffcdfdfgffgcgggfgggg	XT:A:R	NM:i:1	SM:i:O	AM:i:0	X0:i:7	Xl:i:
XM:i:1 XO:i:0 XG:i:0 MD:2	Z:12G25														
IA-GA_0000:1:1:4093:1065#0	147	scaffold_57	479354	20	38M	479190	- 202	GTCCTTGCATCTCTTGGCAACTTGTTTGCTCTTGGATT	afdfffffbbfQf_ghgchhfhfgghhhhdhffffffd	XT:A:U	NM:i:0	SM:i:20	AM:i:O	X0:i:1	Xl:i:
XM:i:0 XO:i:0 XG:i:0 MD:2															
IA-GA_0000:1:1:6805:1068#0	99	scaffold_11	3541452		38M	3541616	202	AATGCCATTATCTCTAAGTGTTTGTTTCATCCAAAGTG	հհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհհ	XT:A:R	NM:i:1	SM:i:O	AM:i:0	X0:i:43	XM:i:
XO:i:0 XG:i:0 MD:Z:8A29															

LLUMINA



MINISTERIO GOBIERNO DE CIENCIA DE ESPAÑIA E INNOVACIÓN

"Una manera de hacer Europa"

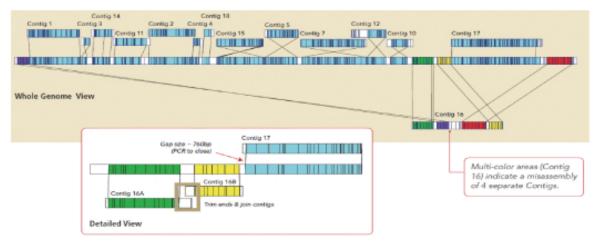

Most common applications of NGS

de hacer Europa

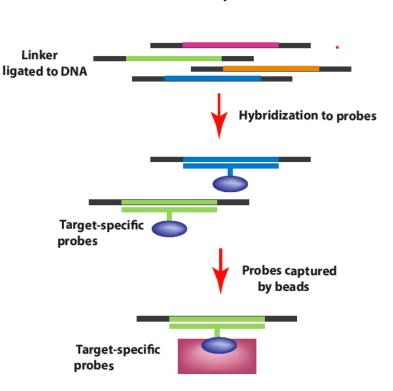
- Whole GENOME Resequencing
 - Need reference genome
 - Variation discovery

Whole Genome Shotgun Sequencing Method

SCATTTCGAGTTACCTGGACAACCAGTGGTACTGAGGACGCAAGAGGCCTTGATTGGCCAATAATAGTATAT


Generate Finished Sequence

- Whole GENOME "de novo" sequencing
 - Uncharacterized genomes with no reference genome available
 - known genomes where significant structural variation is expected.
 - Long reads or mate-pair libraries. Sequencing mostly done by Roche 454
 - Assembly of reads is needed: Computational intensive
- E.g. Genome bacteria sequencing

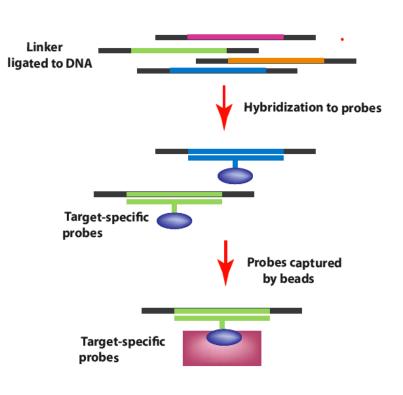


Whole EXOME Resequencing

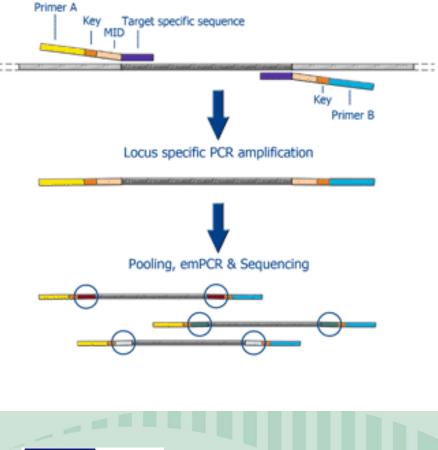
- Need reference genome
 - Available for Human and Mouse
- Variation discovery on ORFs
 - 2% of human genome (lower cost)
 - 85% disesease mutation are in the exome
- Need probes complementary to exons
 - Nimblegen
 - Agilent

• E.g. Human exome

In-Solution Capture



- Targeted Resequencing
 - Capture of specific regions in the genome
- Custom genes panel sequencing
 - Allows to cover high number of genes related to a disease
 - E.g. Disease gene panel
- Low cost and quicker than capillary sequencing
- Multiplexing is possible
- Need custom probes complementary to the genomic regions
 - Nimblegen
 - Agilent


In-Solution Capture

Amplicon sequencing

- Sequencing of regions amplified by PCR.
- Shorter regions to cover than targeted capture
- No need of custom probes
- Primer design is needed
- High fidelity polymerase
- Multiplexing is needed

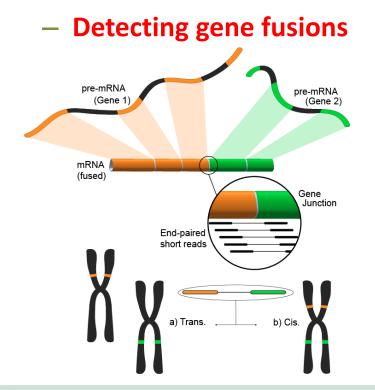
FONDO

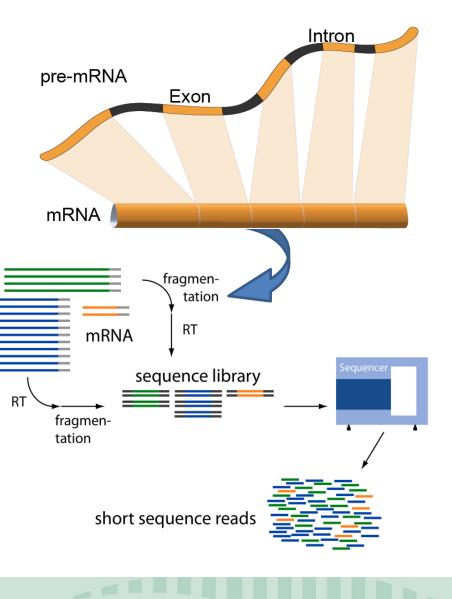
anera de hacer Europa

Transcriptomics - 1

• RNA-Seq

- Sequencing of mRNA
- rRNA depleted samples
- Very high dynamic range
- No prior knwoledge of expressed genes
- Gives information about (richer than microarrays)
 - Differential expression of known or unknown transcripts during a treatment or condition
 - Isoforms and
 - New alternative splicing events
 - Non-coding RNAs
 - Post-transcriptional mutations or editing,
 - Gene fusions.

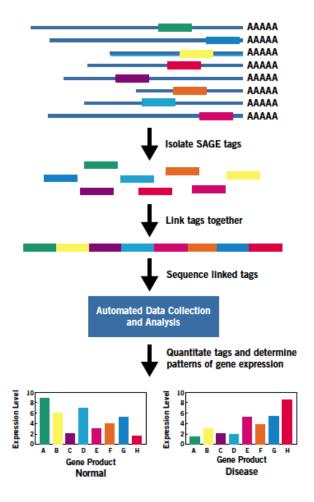




Transcriptomics - 1

- RNA-Seq
 - Sequencing of mRNA

MINISTERIO DE CIENCIA E INNOVACIÓN



Transcriptomics - 2

- **SAGE**. Serial Analysis of Gene Expression
 - Quantification of gene expression levels on a genome-wide scale.
 - Determines mRNA expression by sequencing unique sequence tags isolated from the 3' ends of mRNAs
 - Advantages over microarrays:
 - Detects known and novel mRNAs.
 - Is highly reproducible with a dynamic range of > 105.
 - SAGE strategy is the better if looking at changes in expression levels of known transcripts during a treatment or condition.

GOBIERNO

DE CIENCIA

Applications of RNAseq

Qualitative:

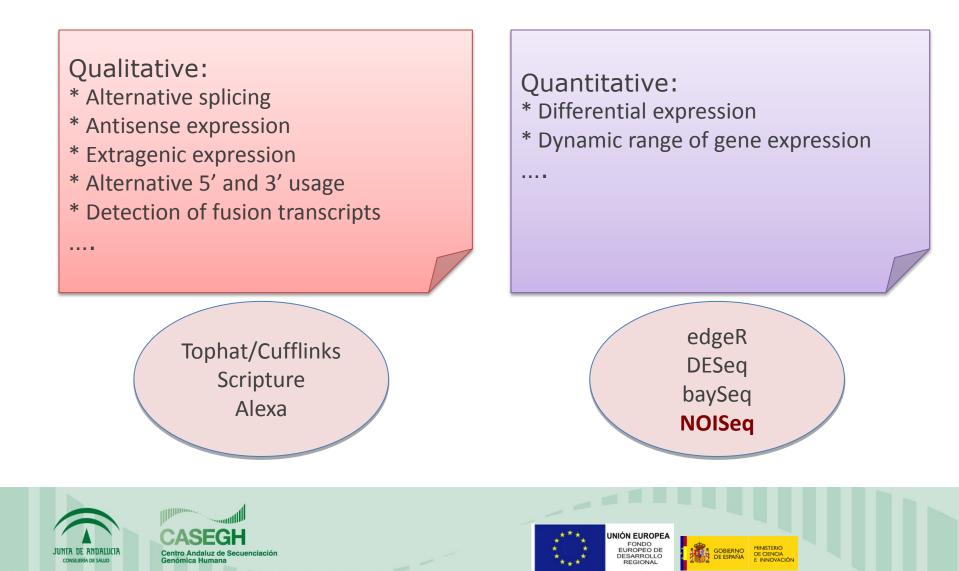
- * Alternative splicing
- * Antisense expression
- * Extragenic expression
- * Alternative 5' and 3' usage
- * Detection of fusion transcripts

Quantitative:

. . . .

- * Differential expression
- * Dynamic range of gene expression

. . . .



GOBIERNO DE ESPAÑA E INNOVACIÓN

Una manera de hacer Europa

Applications of RNAseq

nera de hacer Europa

Advantages of RNAseq?

RNAseq

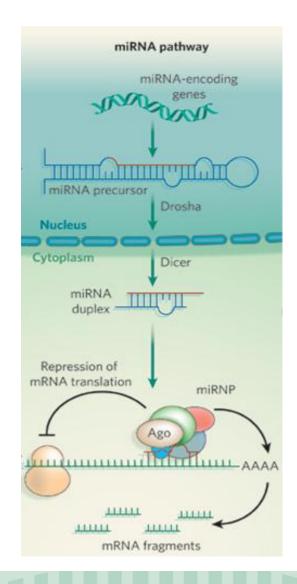
microarrays

- * Non targeted transcript detection
- * No need of reference genome
- * Strand specificity
- * Find novels splicing sites
- * Larger dynamic range
- * Detects expression and SNVs
- * Detects rare transcripts

- * Restricted to probes on array
- * Needs genome knowledge
- * Normally, not strand specific
- * Exon arrays difficult to use
- * Smaller dynamic range
- * Does not provide sequence info
- * Rare transcripts difficult

and.... are there any disadvantages?????

. . . .

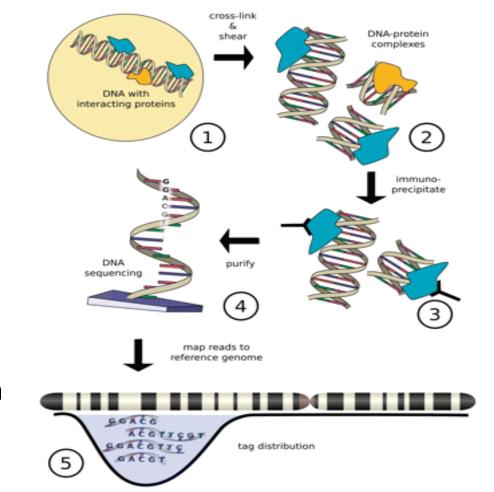

A A A A

Transcriptomics - 3

- miRNA/small nonCoding RNA sequencing
 - RNA Size selection step
 - 18-40 bp
 - Profiling of known miRNAs
 - miRNA discovery

MINISTERIO DE CIENCIA

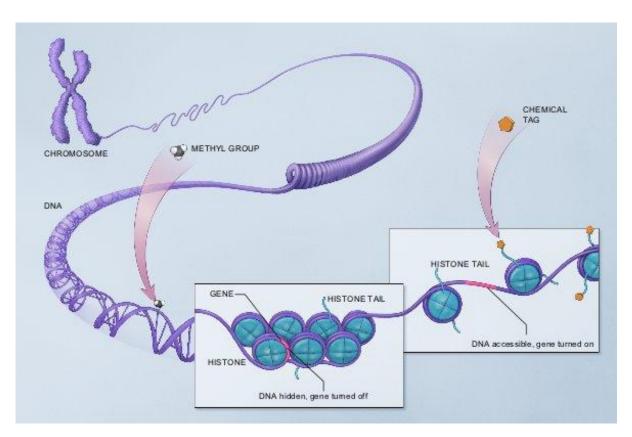
GOBIERNO DE ESPAÑA



TFBS detection

ChIP-Seq

- Identification of genomic region for gDNA binding proteins:
 - Transcription Factor binding site detection


Egigenomics - I

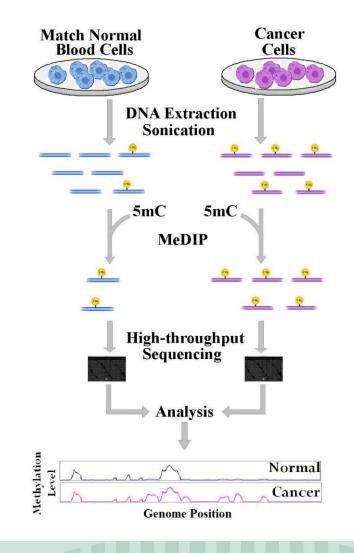
Epigenomics refers to functionally relevant modifications to the genome that do not involve a change in the nucleotide sequence

• Play a role in turning genes off or on

Epigenomic Marks.

- a) Methyl groups attach to the backbone of a DNA molecule.
- b) A variety of chemical tags attach to the tails of histones. This action affects how tightly DNA is wound around the histones.

ChIP-Seq: Histone methylation detection


Egigenomics - 2

Methyl-Seq

- CpG island methylation
- Bisulfite sequencingbased method
- > E.g. Cancer studies.
 - Different degree of chromatin methylation affects expression of genes

MINISTERIO DE CIENCIA

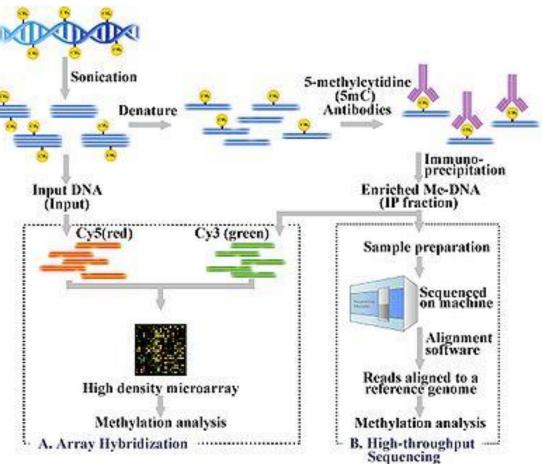
GOBIERNO DE ESPAÑA

FONDO

EUROPEO DE DESARROLLO

REGIONAL

'Una manera de hacer Europa


Egigenomics - 2

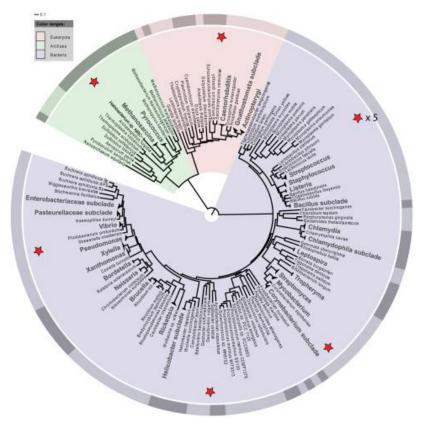
MeDIP-Seq, methylated-DNA immunoprecipitation

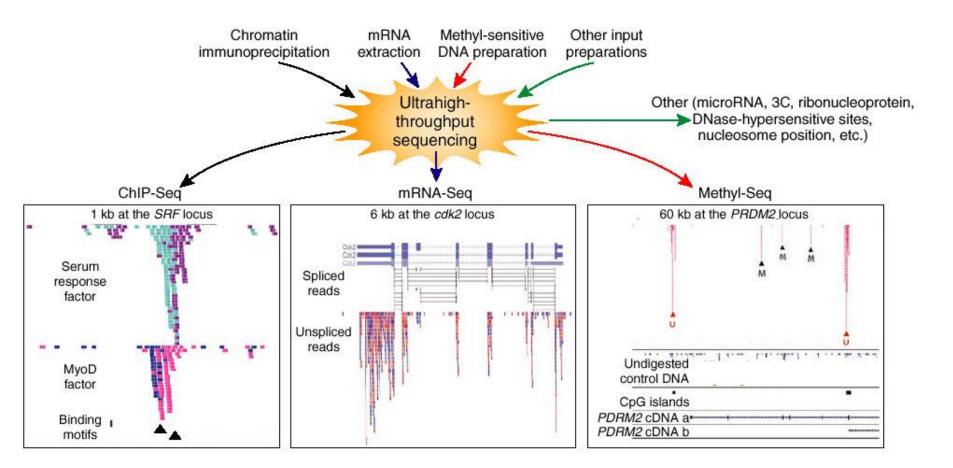
Similar to ChIP-Seq

Immunoprecipitating methylated DNA with an antibody raised against 5'methylcytosine.

The unmethylated DNA is washed away, leaving the material highly enriched for methylated DNA

Metagenomics


- The application of modern genomics techniques to the study of communities of microbial organisms directly in their natural environments, bypassing the need for isolation and lab cultivation of individual species
 - A sample may contain many different microorganisms,
- 16s Sequencing
- Shotgun genome sequencing
- Transcriptome sequencing

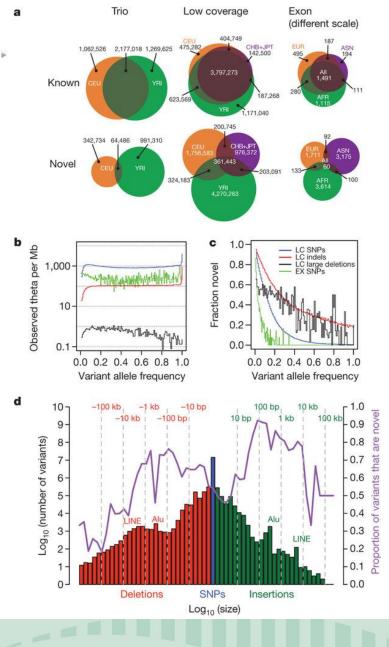


Census NGS methods

Successful NGStories

NATURE | ARTICLE OPEN

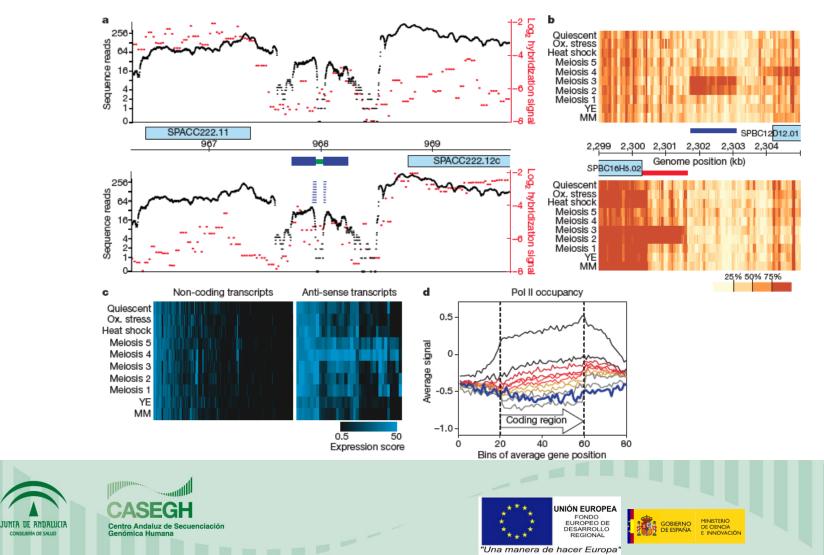
previous article next article


A map of human genome variation from populationscale sequencing

The 1000 Genomes Project Consortium

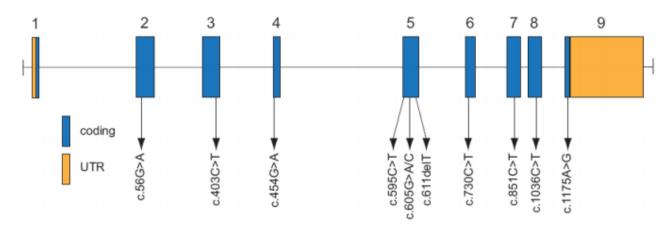
Affiliations | Contributions | Corresponding author

Nature 467, 1061–1073 (28 October 2010) | doi:10.1038/nature09534 Received 20 July 2010 | Accepted 30 September 2010 | Published online 27 October 2010



GOBIERNO DE ESPAÑA E INNOVAC

Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution


Brian T. Wilhelm¹*[†], Samuel Marguerat¹*[†], Stephen Watt¹[†], Falk Schubert¹[†], Valerie Wood¹, Ian Goodhead¹[†], Christopher J. Penkett¹[†], Jane Rogers¹ & Jürg Bähler¹[†]

Exome sequencing identifies the cause of a Mendelian disorder

Sarah B. Ng^{1,*}, Kati J. Buckingham^{2,*}, Choli Lee¹, Abigail W. Bigham², Holly K. Tabor², Karin M. Dent³, Chad D. Huff⁴, Paul T. Shannon⁵, Ethylin Wang Jabs^{6,7}, Deborah A. Nickerson¹, Jay Shendure^{1,†}, and Michael J. Bamshad^{1,2,8,†}

¹Department of Genome Sciences, University of Washington, Seattle, Washington, USA ²Department of Pediatrics, University of Washington, Seattle, Washington, USA ³Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA ⁴Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA ⁵Institute of Systems Biology, Seattle WA, USA ⁶Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA ⁷Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland ⁸Seattle Children's Hospital, Seattle, Washington, USA

Miller syndrome

Figure 2. Genomic structure of the exons encoding the open reading frame of *DHODH DHODH* is composed of 9 exons that encode untranslated regions (orange) and protein coding sequence (blue). Arrows indicate the locations of 11 different mutations found in 6 families with Miller syndrome.

Method

Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts

Joshua Z Levin*, Michael F Berger[†], Xian Adiconis*, Peter Rogov*, Alexandre Melnikov*, Timothy Fennell*, Chad Nusbaum*, Levi A Garraway^{†§} and Andreas Gnirke^{*}

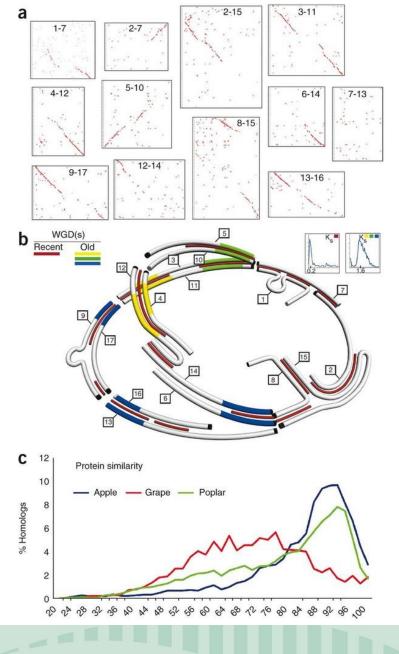
Addresses: 'Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA 02141, USA. *Cancer Program, Broad Institute of MIT and Harvard, 5 Cambridge Center, Cambridge, MA 02142, USA. *Sequencing Platform, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA 02141, USA. \$Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.

NUF	214	(exo	n 29)																			XKF	73 (e	xon 2)
caa	cct	ctg	ggtt	cag	ctt	ttg	rcca	aago	ctt	cag	CACO	сто	GAG	AAT	GGA	GAC	AGT	GTT	TGA	AGA	GAT	GGA	TG	
				s									FOP											
NUF	214	(exo	n 29)																			XKF	7 <i>3</i> (e	xon 3)
caa	cct	ctad	att	cad	ctt	tto	rcca	aad	stt	cag	TGT	TTT	GCA	CAC	CGT	ragi	AAA	TTA	CCA	CAA	ATG	GTT	GAA	АААТ
т		-		s					s		v	c		Р		Е			т	N			TOP	
1	0	0	-	0	-	Ŭ	×	~	0	0	•	0	•	-	-	-	-	-	1		9		101	
NUF	214	(exo	n 29)																			XKF	7 <i>3</i> (e	xon 4)
caa	cct	ctad	att	cao	ctt	tto	rcca	aad	stt	cag	TAT	GC	IGA!	rga(CAT	TTT	ccc	TGT	TAT	CAG	тта	CTT	ATG	GGGC
т				s		-	0	-		Ā		L	м	т	F			L		v	т		G	
							~																	
NUF	214	(exo	n 27)																			XKF	73 (e	xon 4)
					ית מי	CO	CA	C.A.	22.00		CO	Cm	T A T (220	ומידית	200	ATC.	ccc	000	mme				
-++			1000	iyyu	A11	GCI	GA	GAG	CAI.			GT.	IAI	AG	IIA		AI G	9999	CUA	110	GCI	GCA	AIA	IACI
att	-	-	s	-	-	-	-	-	-		P	v		s						S	-	-		т

Figure 3

Sequences from NUP214-XKR3 fusion transcripts detected after hybrid selection. After hybrid selection, 152 reads were aligned to the transcriptome and detected as NUP214-XKR3 fusions. From top to bottom, we observed 137, four, eight, and three reads for these transcripts. The NUP214 (exon 27) to XKR3 (exon 4) has a stop codon downstream (not shown). Only NUP214 (exon 29) to XKR3 (exon 4) retains an open reading frame downstream of the fusion. Before hybrid selection, eight reads were aligned to the transcriptome and detected as NUP214-XKR3 fusions; only the NUP214 (exon 29) to XKR3 (exon 2) transcript was detected. Sequence from NUP214 DNA is shown as lower case, and from XKR3, as bold and upper case.

'Una manera de hacer Europa

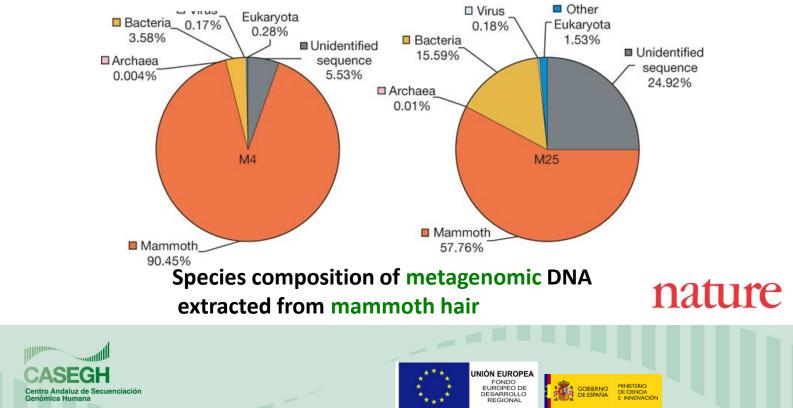

NATURE GENETICS | ARTICLE

The genome of the domesticated apple (Malus × domestica Borkh.)

Riccardo Velasco, Andrey Zharkikh, Jason Affourtit, Amit Dhingra, Alessandro Cestaro, Ananth Kalyanaraman, Paolo Fontana, Satish K Bhatnagar, Michela Troggio, Dmitry Pruss, Silvio Salvi, Massimo Pindo, Paolo Baldi, Sara Castelletti, Marina Cavaiuolo, Giuseppina Coppola, Fabrizio Costa, Valentina Cova, Antonio Dal Ri, Vadim Goremykin, Matteo Komjanc, Sara Longhi, Pierluigi Magnago, Giulia Malacarne, Mickael Malnoy 🔳 et al.

Affiliations | Contributions | Corresponding author

Nature Genetics 42, 833-839 (2010) | doi:10.1038/ng.654 Received 19 November 2009 | Accepted 03 August 2010 | Published online 29 August 2010


"Una manera de hacer Europa'

Letter

Nature 456, 387-390 (20 November 2008) | doi:10.1038/nature07446; Received 12 May 2008; Accepted 22 September 2008

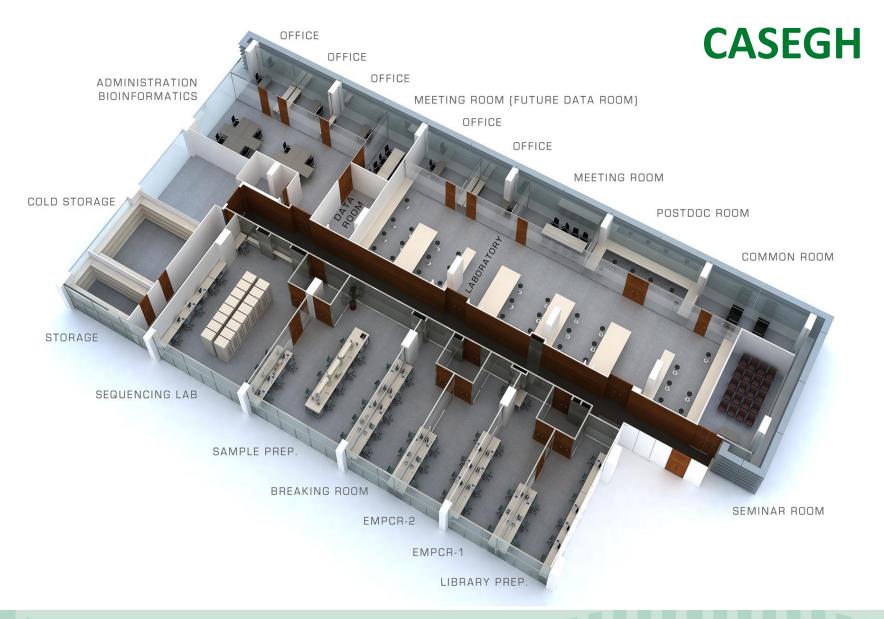
Sequencing the nuclear genome of the extinct woolly mammoth

Webb Miller¹, Daniela I. Drautz¹, Aakrosh Ratan¹, Barbara Pusey¹, Ji Qi¹, Arthur M. Lesk¹, Lynn P. Tomsho¹, Michael D. Packard¹, Fangqing Zhao¹, Andrei Sher^{2,9}, Alexei Tikhonov³, Brian Raney⁴, Nick Patterson⁵, Kerstin Lindblad-Toh⁵, Eric S. Lander⁵, James R. Knight⁶, Gerard P. Irzyk⁶, Karin M. Fredrikson⁷, Timothy T. Harkins⁷, Sharon Sheridan⁷, Tom Pringle⁸ & Stephan C. Schuster¹

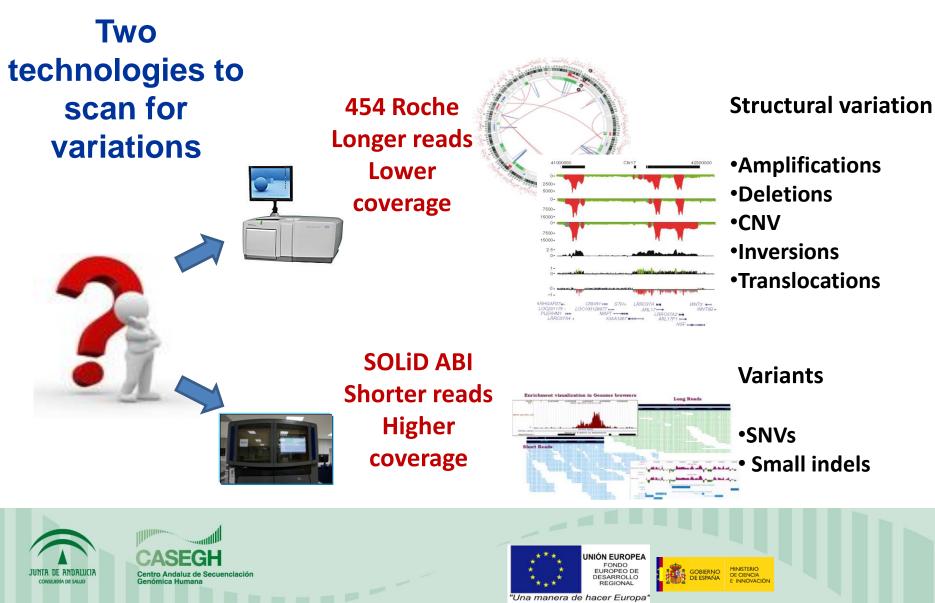
'Una manera de hacer Europa

No so far.... Sequencing Centers

Andalusian Human Genome Sequencing Center CASEGH


Cartuja 93 Scientific and Technology Park Sevilla

SEQUENCING LAB



"Una manera de hacer Europa"

Genomics Unit

High Performance Computing Cluster

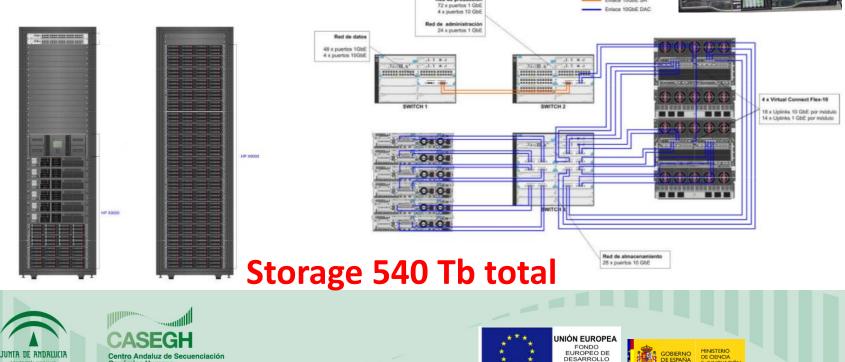
Bioinformatics Unit

24 High Performance Computing nodes – **72-192** Gb RAM 2 Control nodes - **24** Gb RAM

- 2 x Quad core CPU
- 16 threads

ca Humana

2 x 10Gb Network interface


Execution of 400 jobs in parallel

ine tochE SR

REGIONAL

'Una manera de hacer Europa'

Red de producción

Services at CASEGH

SERVICES.Inanscriptomics.Epigenomics.Arrays.Data analysis.-

HIGH THROUGH PUT SEQUENCE DATA GENERATION WITH PREMIUM QUALITY IN ACCURACY

> GOBIERNO DE ESPAÑA E INNOVACIÓN

"Una manera de hacer Europa"

The Medical Genome Project (MGP)

Public Funding:

Andalucia Health System.
Central government.
European Regional Development Fund (ERFD).

Private Funding:

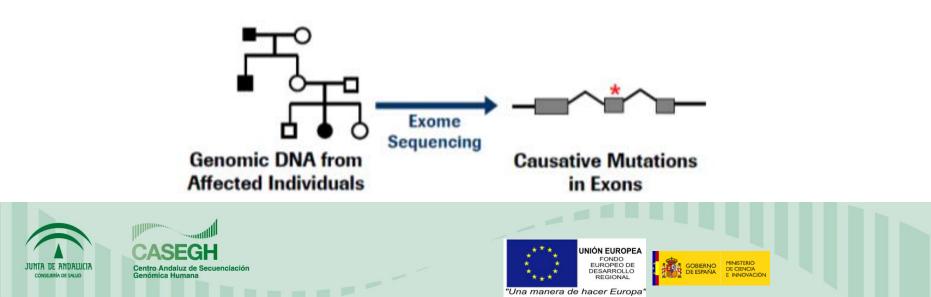
•454 Life Sciences (Roche).

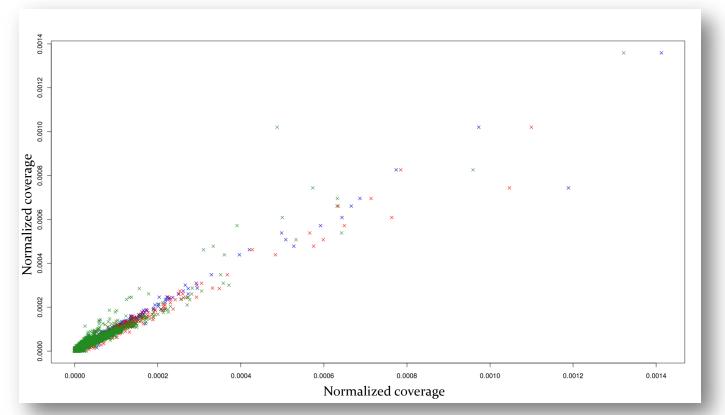
The MGP Scope and Aims

- Medical Genome Project's (MGP) general goals are:
 - Identify novel genes responsible for inherited rare diseases
 - Identify susceptibility genes for common diseases
 - Use the results of genetic research to discover new drugs acting on new targets (new genes associated with human disease pathways)

The MGP Scope and Aims

- Medical Genome Project's (MGP) specific goals are:
 - The characterization of a great number of genetic diseases by means of exome sequencing.
 - Diseases on study are genetic Rare Diseases
 - Monogenic diseases
 - To characterize SNPs in a healthy control population
 - 300 Individuals
- MGP will be used as the first steps towards the implementation of genomic and personalized medicine in the Andalusian HEALTHCARE SYSTEM. A system covering a population of 8.5 million.

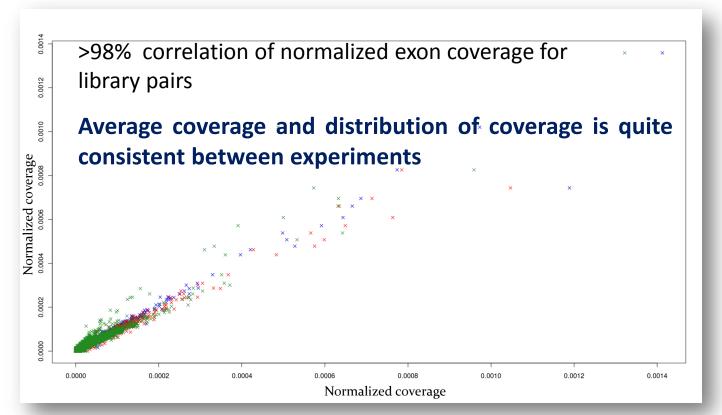



Exome capture

- Focus on the Most Relevant Portion of the Genome
- "Exome" (all exons in the genome):
 - the most functionally relevant ~2% of the genome.
 - where the majority of known inherited disease-causing mutations reside.

Exome capture reproducibility

Normalized coverage per exon for different samples

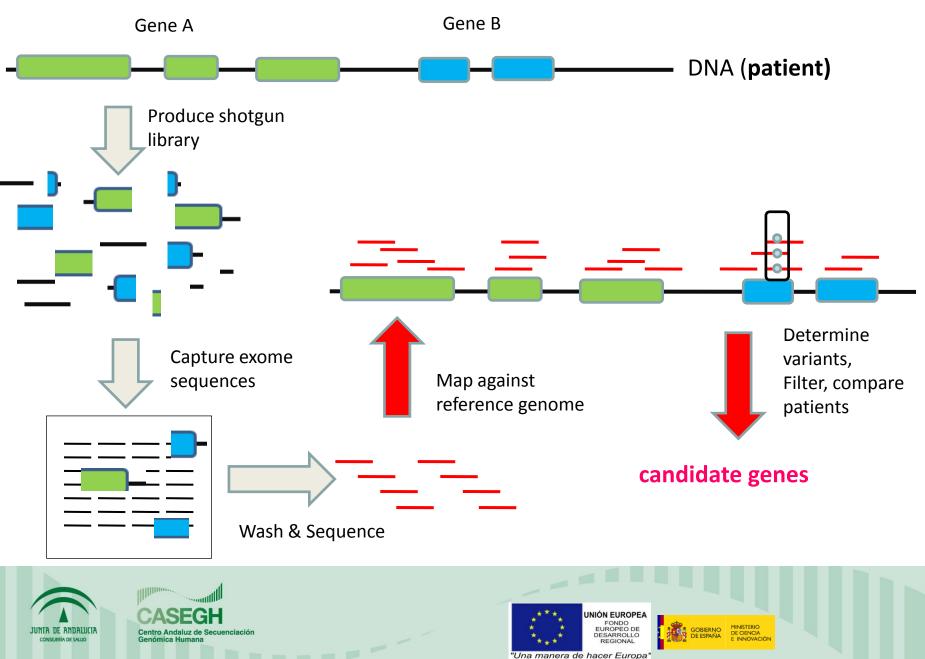


MINISTERIO DE CIENCIA

GOBIERNO DE ESPAÑA

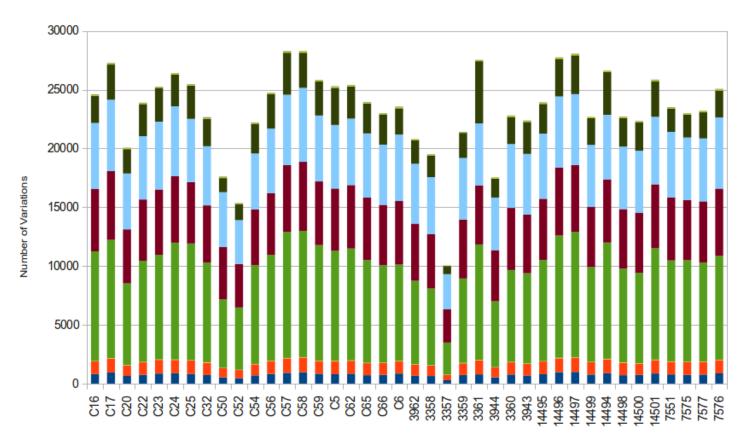
Exome capture reproducibility

Normalized coverage per exon for different samples



Exome sequencing work-flow for Variant detection

Bioinformatic analysis Primary analysis pipeline (Automatic)


	Automatic QC											
	Preprocess			Annotation								
	Position / quality	Mapping	Variant Calling	Annotation and filtering								
	Base composition	BFAST	SAM to BAM									
	Nucleotide QC		Sort BAM Clean BAM Index BAM									
	Sequence cleaning											
					Variation							
FastQ												
Color space 200M reads	4-6 hours*	8-12 hours* 8-1	.2 hours* minute									

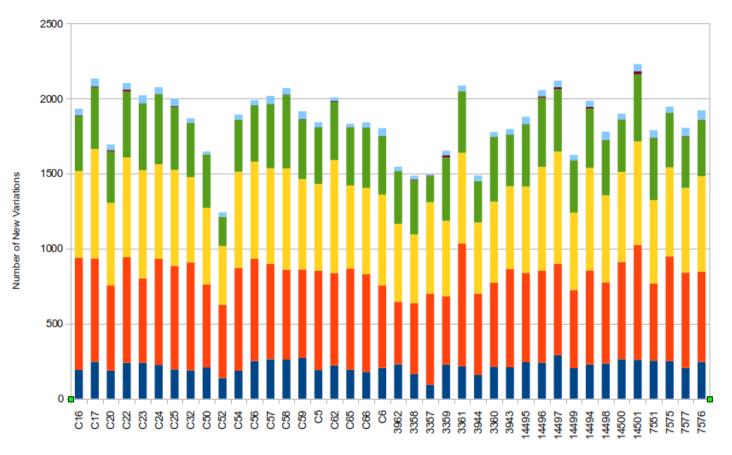
* 8CPUs 200Mreads (>25-30 Exomes per week)

SNPs distribution across samples

VARIATION TYPE

Samples

■ UTR ■ SPLICE_SITE ■ FRAMESHIFT ■ INTRONIC ■ NON_SYNONYMOUS ■ SYNONYMOUS ■ INTERGENIC ■ STOP_GAIN ■ STOP_LOST



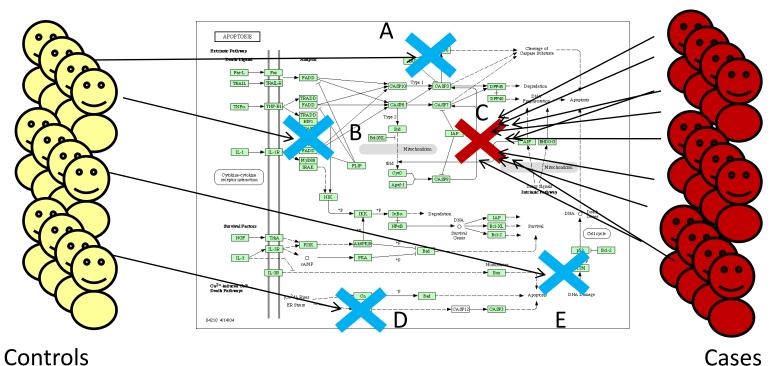
GOBIERNO DE ESPAÑA E INNOVACIÓN

New Variation Types

New Variation Types

Samples

synonymous intergenic intronic Non-synonymous splice UTR



GOBIERNO DE ESPAÑA E INNOVACIÓN

Secondary analysis: Finding the mutations causative of diseases

The simplest case: monogenic disease due to a single gene

Cases

DE CIENCIA

The principle: comparison of patients (or families) and reference controls

🛨 mutation 🦳	*	\star		Patient 1
	*	*		Patient 2
	*	*	*	Patient 3

The principle: comparison of patients (or families) and reference controls

★ mutation	*	*			Patient 1
	*	*			Patient 2
	*	*	*		Patient 3
		*	*		Control 1
				*	Control 2
			*	*	Control 3

The principle: comparison of patients (or families) and reference controls

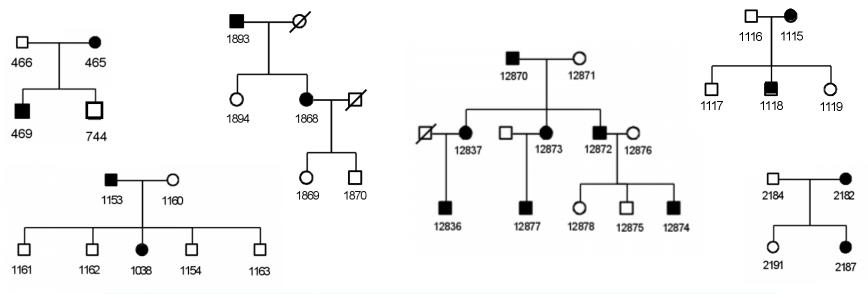
+ mutation	*	*			Patient 1
	*				Patient 2
	*	*	*		Patient 3
		*	*		Control 1
				*	Control 2
			*	*	Control 3

candidate gene (shares mutation for all patients but no controls)

Is this approach realistic? Can we detect such rare variants so easily?

a) Interrogating 50Mb produces too many variants

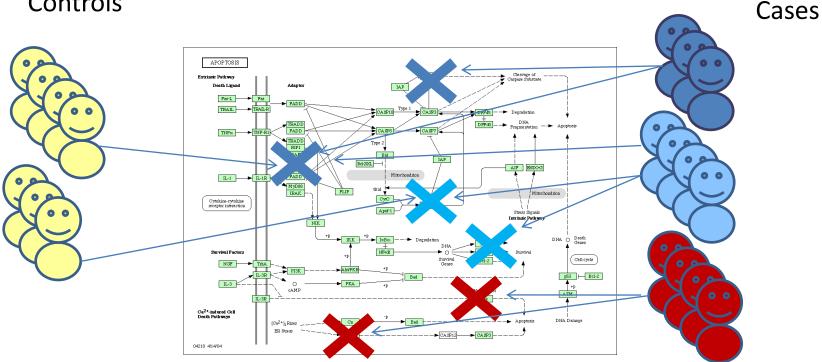
b)In many cases we are not hunting new but known variants


c) Same phenotype can be due to different mutations and different genes

Filtering with multiple family information

	Families						
	1	2	3	4	5	6	
Variants	3403	82	4	0	0	0	
Genes	2560	331	35	8	1	0	

Problem: how to prioritize putative candidate genes



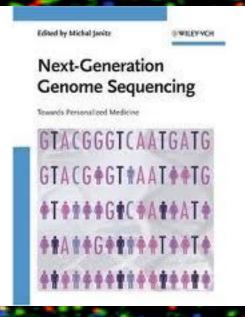
MINISTERIO DE CIENCIA

GOBIERNO DE ESPAÑA

Clear individual gene associations are difficult to find in some diseases

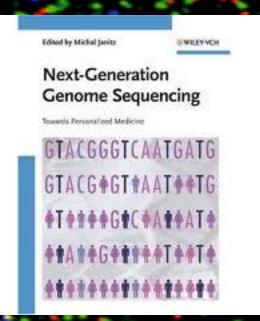
Controls

They can have different mutations (or combinations).


Many cases have to be used to obtain significant associations to many markers.

The only common element is the pathway (yet unknow) affected.

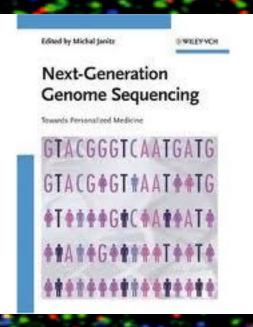
Conclusions


NGS is revolutionizing how we do genome research

Conclusions

NGS is revolutionizing how we do genome research

> But it will also revolutionize our lives....



Conclusions

NGS is revolutionizing how we do genome research

But it will also revolutionize our lives....

If we manage to process and analyze ALL the DATA

THANK YOU