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Functional Interpretation of Microarray Experiments

JOAQUÍN DOPAZO

ABSTRACT

Over the past few years, due to the popularisation of high-throughput methodologies such
as DNA microarrays, the possibility of obtaining experimental data has increased signifi-
cantly. Nevertheless, the interpretation of the results, which involves translating these data
into useful biological knowledge, still remains a challenge. The methods and strategies used
for this interpretation are in continuous evolution and new proposals are constantly arising.
Initially, a two-step approach was used in which genes of interest were initially selected,
based on thresholds that consider only experimental values, and then in a second, indepen-
dent step the enrichment of these genes in biologically relevant terms, was analysed. For dif-
ferent reasons, these methods are relatively poor in terms of performance and a new gen-
eration of procedures, which draw inspiration from systems biology criteria, are currently
under development. Such procedures, aim to directly test the behaviour of blocks of func-
tionally related genes, instead of focusing on single genes.

INTRODUCTION

AN INCREASING CORPUS of evidence reveals that genes do not operate alone within the cell, but in an in-
tricate network of interactions that we only recently start to envisage (Hallikas et al., 2006; Rual et al.,

2005; Stelzl et al., 2005). It is widely accepted that co-expressing genes tend to fulfil common roles in the
cell (Lee et al., 2004; Stuart et al., 2003), and in fact, this causal relationship has been used to predict gene
function from patterns of co-expression (Mateos et al., 2002; van Noort et al., 2003). In this scenario, there
is a clear necessity for methods and tools to aid the interpretation of large-scale experiments such as mi-
croarrays, and to formulate genome-scale hypothesis from a systems biology perspective (Westerhoff and
Palsson, 2004), in such a way that the collective properties of groups of genes are taken into account.

Among the genome-scale experimental methodologies DNA microarray technology can be considered
the paradigm due to its popularity and characteristics. Although many different biological questions can be
addressed though microarray experiments, there are usually three types of objective in this context: “class
comparison,” “class prediction,” and “class discovery” (Allison et al., 2006; Golub et al., 1999). The first
two objectives fall into the category of supervised methods and usually involve the application of tests to
define differentially expressed genes, or the use of different procedures to predict class membership on the
basis of the values observed for a number of “key” genes. Clustering methods belong to the last category,
also known as unsupervised analysis, because no previous information about the class structure of the data
set is used in the study.
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Interestingly, if strategies for microarray data analysis are considered from a historical perspective, an
initial period can be distinguished in which almost all publications were related to reproducibility and sen-
sitivity issues. Thus, most early microarray papers dating from the late nineties were proof-of-principle ex-
periments (Eisen et al., 1998; Perou et al., 1999), in which only cluster analysis was applied in order to
check whether differences at gene expression level could reproduce macroscopic observations. Later, as the
focus moved towards finding genes differentially expressed among experimental conditions specificity be-
came a main concern. It soon became obvious that genome-scale experiments needed to be carefully
analysed, as when large amounts of data were explored many apparent findings occurred by mere chance
(Ge et al., 2003), especially if liberal procedures, such as the fold change were used for biomarker selec-
tion purposes. In this context, different statistical tests along with methods for the adjustment of p-values
(which are considered standard today) started to be extensively used (Benjamini and Yekutieli, 2001; Storey
and Tibshirani, 2003). More recently, the use of microarrays for building predictive models of clinical out-
comes (van ’t Veer et al., 2002), although not free from criticism (Simon, 2005), has fuelled the use of this
technology because of its practical clinical implications.

While intra-platform reproducibility is nowadays high (Moreau et al., 2003), there are still some con-
cerns with the cross-platform coherence of results. Recent studies show that, despite the overlap between
genes with significant differential expression found across platforms is poor, the biological roles these genes
fulfill are highly consistent (Bammler et al., 2005). This fact clearly highlights the importance of the in-
terpretation of experiments in terms of their biological implications rather than restricting them to a mere
comparison of lists of gene identifiers (Al-Shahrour and Dopazo, 2005; Al-Shahrour et al., 2005b).

The extensive use of microarray technology has brought about the need to develop functional annotation
tools that essentially look for functional terms over-represented in groups of genes defined by the experi-
mental values. Examples of widely used terms with functional meaning are Gene Ontology (GO) (Ash-
burner et al., 2000), KEGG pathways (Kanehisa et al., 2004), CisRed motifs (Robertson et al., 2006), pre-
dictions of transcription factor binding sites (Wingender et al., 2000), Interpro motifs (Mulder et al., 2005),
etc. Programmes such as ontoexpress (Draghici et al., 2003), FatiGO (Al-Shahrour et al., 2004), GOMiner
(Zeeberg et al., 2003), etc., can be considered representatives of a family of methods that use these terms
to find clues for the interpretation of the results of microarray experiments (Khatri and Draghici, 2005).
These methods are used a posteriori on the genes of interest that were previously selected in the first step.
Typical criteria for selection are differential expression (class comparison) and co-expression (class dis-
covery), for example. By means of this simple two-step approach, a reasonable biological interpretation of
a microarray experiment can be attained. Nevertheless, this approach has a weak point: the list of genes of
interest, which is generally incomplete. This is due to the fact that the definition of this list is affected by
many factors including, among others, the method of analysis and the threshold imposed. In the case of
class discovery analysis, biological annotations have also been employed as a cluster validation criteria
(Bolshakova et al., 2005).

The difficulties for defining repeatable lists of genes of interest across laboratories and platforms even
using common experimental and statistical methods (Bammler et al., 2005; Qiu et al., 2006) has led sev-
eral groups to propose different approaches which aim to select genes taking into account their functional
properties. The Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005), al-
though not criticism-free (Damian and Gorfine, 2004), has pioneered a family of methods devised not to
find individual genes but to search for groups of functionally related genes with a coordinate (although not
necessarily high) over- or under-expression across a list of genes ranked by differential expression between
two classes, compared in microarray experiments. Different tests have recently been proposed for microarray
data, with this aim in mind (Al-Shahrour et al., 2005a; Goeman et al., 2005, 2004; Kim and Volsky, 2005;
Smid and Dorssers, 2004; Tian et al., 2005) and also for ESTs (Chen et al., 2006) and some of them are
available on web servers (Al-Shahrour et al., 2005a,b). In particular, the FatiScan procedure (Al-Shahrour
et al., 2006, 2005b), which implements a segmentation test (Al-Shahrour et al., 2005a), can deal with or-
dered lists of genes independently from the type of data that originated them. This interesting property al-
lows for its application to other types of data apart from microarrays. Another recent development is the
use of biological information (Huang and Pan, 2006; Pan, 2006) or phenotypic information (Jia and Xu,
2005) as a constitutive part of clustering algorithms in the case of class discovery (clustering) analysis.
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METHODS

Threshold-based functional analysis

The final aim of a typical microarray experiment is to find a molecular explanation for a given macro-
scopic observation (e.g., which pathways are affected by the deprivation of glucose in a cell, what biolog-
ical processes differentiate a healthy control from a diseased case). In the first generation of approaches
proposed, the interpretation of microarray data is usually performed in two steps: in a first step genes of
interest are selected (because they co-express in a cluster or they are significantly over- or under-expressed
when two classes of experiments are compared) using different procedures, whose description is beyond
the scope of this manuscript (Azuaje and Dopazo, 2005; Draghici and Kuklin, 2003). The selection process
does not take into account the fact that these genes are acting cooperatively in the cell and consequently
their behaviour must be coupled to some extent. In this selection process, under the unrealistic simplifica-
tion of independence among gene behaviours, stringent thresholds to reduce the false positives ratio in the
results are usually imposed. In a second step, the selected genes of interest are compared with a background
(typically the rest of the genes) in order to find enrichment in any functional term. This comparison with
the background is required otherwise the significance of a proportion (even if high) cannot be determined.
This comparison to the background is essential because sometimes apparent high enrichment in a given
functional term is nothing but a reflect of a high proportion of this particular term in the whole genome
and, consequently, has nothing to do with the set of genes of interest. The procedure for the interpretation
of genes selected by significant differential expression among two pre-defined classes of experiments in il-
lustrated in Figure 1A. Similarly, Figure 1B shows the two-step procedure applied to co-expressing genes
found by clustering.
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FIG. 1. Two-steps procedure for the functional interpretation of distinct microarray experiments. (A) The supervised
approach: functional annotation of genes differentially expressed among two classes (C1 and C2) of experiments. The
figure represents a list of genes (rows) ordered by differential expression when classes C1 and C2 are compared. Genes
on the top are more expressed on class C1 (red color) than in C2. Conversely, genes on the bottom are more expressed
on class C2. There is a gradient of differential expression between the two extreme situations. Typically genes are
arranged by means of a test (e.g., a t-test) and those with a value of the statistic over a given threshold are declared as
significant (right part). Then the distribution of functional terms (e.g., GO terms) among the differentially expressed
genes and the rest is compared by means of another test (e.g., Fisher’s exact test). (B) The unsupervised approach:
functional interpretation of clusters of co-expressed genes. The functional terms found in the set of genes of interest
(clusters of co-expressed genes) are compared to the background: the rest of genes.



This second step of comparison between the selected genes and the background can be carried out by
means of the application of other, equivalent tests such as the hypergeometric, �2, binomial, Fisher’s exact
test, etc., implemented in different available tools, reviewed in (Khatri and Draghici, 2005). Among these
tools, the most popular ones (most quoted in literature) are Onto-express (Draghici et al., 2003) (http://
vortex.cs.wayne.edu/ontoexpress/) and FatiGO (Al-Shahrour et al., 2004) (www.fatigo.org). These tools use
different biological terms with functional meaning such as GO (Ashburner et al., 2000), KEGG pathways
(Kanehisa et al., 2004), and other terms of biological relevance. Table 1 shows a list of the most popular
tools for analysing enrichment in biologically relevant terms. Surprisingly, there are still some tools that do
not take into account widely established procedures such as multiple testing corrections (Table 1). As a
general comment, FDR-based multiple testing adjustments are less conservative than Bonferroni or Sidak
counterparts. Thus the package Babelomics (Al-Shahrour et al., 2006; Al-Shahrour et al., 2005b), which in-
cludes FatiGO (Al-Shahrour et al., 2004), and the Onto Tools (Draghici et al., 2003; Khatri et al., 2005)
would be optimal in terms of biological information content and testing strategies. DAVID/Ease (Dennis
et al., 2003; Hosack et al., 2003), FunSpec (Robinson et al., 2002), only for yeast, and GeneMerge (Castillo-
Davis and Hartl, 2003) would be attractive from the point of view of the biological information although
a bit conservative in terms of multiple testing correction. On the other hand, BayGO (Vencio et al., 2006),
GOMiner (Zeeberg et al., 2003; Zeeberg et al., 2005), GOstat (Beissbarth and Speed, 2004), GOSurfer
(Zhong et al., 2004) and Ontology Traverser (Young et al., 2005) use proper multiple-testing corrections
although only provide GO terms for the annotation of the experiments. Other tools such as GO:TermFinder
(Boyle et al., 2004) only provide GO and are conservative in the multiple testing adjustment or even fail
to provide such adjustment, like FuncAssociate (Berriz et al., 2003), GOTM (Zhang et al., 2004) or CLENCH
(Shah and Fedoroff, 2004).

This two-step approach is the natural choice for analysing clusters of genes, and is implemented in some
packages, such as the GEPAS (Herrero et al., 2003, 2004; Vaquerizas et al., 2005), where clusters of genes
obtained can be directly transferred to FatiGO (Al-Shahrour et al., 2004) for their functional analysis. Nev-
ertheless, the application of a two-step strategy to the interpretation of differential gene expression in class
comparison experiments causes an enormous loss of information as a large number of false negatives is ac-
cepted in order to preserve a low ratio of false positives (and the noisier the data the worse the effect).

Threshold-free functional analysis

The interpretation of a microarray experiment using the two-step approach is far from efficient when con-
sidered from a systems biology perspective. Methods directly inspired in systems biology focus on collec-
tive properties of the genes more than on individual gene expression values. Functionally related genes si-
multaneously fulfil their roles in the cell and, consequently, they are expected to display a coordinated
expression. It is a long recognized fact that genes with similar overall expression often share similar func-
tions (Eisen et al., 1998; Lee et al., 2004; Wolfe et al., 2005). This observation is consistent with the hy-
pothesis of modularly-behaving gene programmes, where sets of genes are activated in a coordinated way
to carry out functions. In this scenario, a different type of inference can be made based on testing hypoth-
esis centred on blocks of functionally related genes, instead of testing one gene at a time.

Thus, genes can be ranked by using their differential expression values when comparing predefined classes
(e.g., cases and healthy controls) by means of any appropriate statistical test (e.g., t-test). The order of the
genes (that cooperatively act to define pathways, functional classes) in this ranked list must be related to
its participation in the trait studied in the experiment. Consequently, each functional class “responsible” for
the differences between the classes will be found in the extremes of the ranking with highest probability.
Under this perspective the previous imposition of a threshold based on the rank values, which does not take
into account the cooperative behaviour of the genes, is thus avoided. Figure 2 illustrates the threshold-free
analysis strategy. Genes are arranged by differential expression between the classes N (normal) and T (test).
On the right-hand side of the figure, there are labels for two different functional categories at the points in
the list where genes fulfilling the corresponding roles are situated. Functional category A is completely un-
related with the experiment because different genes, belonging to this functional category, appear over-ex-
pressed in classes N and T and also in intermediate positions. Conversely, functional category B is pre-
dominantly fulfilled by genes with high expression in class N (red values corresponding to highest
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expression), but scarcely appears among genes highly expressed in class T. This observation clearly points
to functional category B as one of the molecular basis of the macroscopic observation made in the exper-
iment. Instead of trying to select genes with extreme values of differential expression, systems biology-in-
spired methods will directly search for blocks of functionally related genes significantly cumulated in the
extremes of a ranked list of genes.

There are different methods which have been proposed for this purpose such as the GSEA (Mootha et
al., 2003; Subramanian et al., 2005) or the SAFE (Barry et al., 2005) method that use a non-parametrical
version of a Kolmogorov-Smirnov test. Other strategies are also possible, such as the direct analysis of
functional terms weighted with experimental data (Smid and Dorssers, 2004) or model-based methods (Goe-
man et al., 2004). With similar accuracy, conceptually simpler and quicker methods have also been pro-
posed such as the parametrical counterpart of the GSEA, the PAGE (Kim and Volsky, 2005) or the seg-
mentation test, Fatiscan (Al-Shahrour et al., 2005a).

FatiScan: a segmentation test

A simple way of studying the asymmetrical distribution of blocks of genes across a list of ranked genes
is to check if, in consecutive partitions, one of the parts is significantly enriched in any biological term with
respect to their complementary part. Figure 2C illustrates this concept in an ordered list of genes. In this
list, gray circles represent genes annotated with a particular functional category and open circles represent
genes with any different annotation. In the first partition, the differences (50% versus 35%), cannot be con-
sidered significant. Nevertheless, in the second partition, the differences in the proportions are high enough
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FIG. 2. Threshold-free procedure for the functional annotation of class comparison experiments. On the left: genes
ordered by differential expression between classes N (normal) and T (test). (A) Functional term unrelated to the ex-
periment from which the rank of genes was obtained. (B) Functional term related to the experiment. (C) Schematic
representation of two partitions of the segmentation test.



to be declared significant (75% versus 20%): the vast majority of the genes annotated with the functional
category are on the lower side of the partition.

The segmentation test used for threshold-free functional annotation consists on the sequential application
of the FatiGO (Al-Shahrour et al., 2004) test to different partitions of an ordered list of genes. The FatiGO
test uses a Fisher’s exact test over a contingency table for finding significantly over or under represented
biological terms when comparing the upper side to the lower side of the list, as defined by any partition.
Previous results have shown that a number between 20 and 50 partitions often gives optimal results in terms
of sensitivity and results recovered (Al-Shahrour et al., 2005a). Given that multiple terms (T) are tested in
a predefined number of partitions (P), the unadjusted p-values for a total of T � P tests must be corrected.
The widely accepted FDR (Benjamini and Yekutieli, 2001) can be used for this purpose. Nevertheless, car-
rying out a total of T � P tests would correspond to the most conservative scenario, in a situation in which
no a priori functional knowledge of the system is available. Usually many terms can initially be discarded
from the analysis due to prior information or just by common sense.

The FatiScan test presents two fundamental advantages when compared to other alternative methods based
on Kolmogorov-Smirnov or related tests. On one hand, this method does not require an extreme non-uniform
distribution of genes. FatiScan is able to find different types of asymmetries in the distribution of groups of
genes across the list of data. On the other hand, and still more important, this method does not depend on the
original data from which the ranking of the list was derived. The significance of the test depends only on the
ranking of the genes in the list and the strategy used for performing the partitions. This means that, in addi-
tion to DNA microarray data, this method can be applied to any type of genome-scale data in which a value
can be obtained for each gene. FatiScan is available within the Babelomics package (Al-Shahrour et al., 2006,
2005b) for functional annotation of genome-scale experiments (www.babelomics.org).

RESULTS AND DISCUSION

Functional analysis of gene expression in human diabetes

A case study of gene expression in human diabetes (Mootha et al., 2003) is used to illustrate the appli-
cation of the threshold-free strategy. In the experiment a comparison between two classes (17 controls with
normal tolerance to glucose versus 26 cases, composed of 8 subjects with impaired tolerance and 18 more
subjects with type 2 diabetes mellitus, DM2) failed to detect even a single gene with significant differen-
tial expression.

Genes were ordered according to their differential expression between cases and controls. A t-test, as im-
plemented in the T-Rex tool from the GEPAS package (Herrero et al., 2003, 2004; Vaquerizas et al., 2005)
was used for this purpose. The value of the statistic was used as ranking criteria for ordering the list. As in
the original analysis (Mootha et al., 2003) no genes with a significant differential expression (with a FDR-
adjusted p-value lower than 0.05) were found. A total of 50 partitions of the ranked list were analysed with
the FatiScan algorithm for over- or under-representation of KEGG pathways and GO terms. Table 2 shows
the functional terms significantly over-expressed in the comparison; among them, the most relevant are ox-
idative phosphorylation, ATP synthesis and Ribosome, that were found to be significantly over-expressed
in healthy controls versus diseased cases. Conversely, Insulin signalling pathway was over-expressed in
diseased cases. GO terms and other biologically relevant terms with similar meaning were also found.

Comparison among different threshold-free approaches

Other alternative methods give similar results (Table 2). Oxidative phosphorylation and mitochondrion
are found by GSEA (Mootha et al., 2003), PAGE (Kim and Volsky, 2005) and other statistics (Tian et al.,
2005). Nucleotide biosynthesis can be assimilated to other terms found by these three methods (Kim and
Volsky, 2005; Mootha et al., 2003; Tian et al., 2005) based on a set of functional categories developed by
(Subramanian et al., 2005).

The example showed how different methods detected similar biological terms, even though some of the
terms were defined in different repositories and different contexts. This agreement in the results is in bold
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contrast if compared to the poor overlap reported in different studies where the aim was the selection of
genes (Bammler et al., 2005) instead of blocks of functionally related genes. Nevertheless a rigorous com-
parative study is still necessary to decide on the most efficient one. From a practical point of view, the pre-
ferred methods would be those which use more biological terms and software packages, such as FatiScan
or GSEA.

There are, however, situations in which the threshold-based, two-step approach is the natural choice. For
example, in clustering of genes, clusters are firstly defined and then, are analysed by functional annotation
methods. Table 1 provides an overview for the relative merits of the available programmes. As previously
mentioned, the package Babelomics (Al-Shahrour et al., 2006, 2005b), which includes FatiGO (Al-Shahrour
et al., 2004), and the Onto Tools (Draghici et al., 2003; Khatri et al., 2005) would be optimal in terms of
biological information content and testing strategies.

On genes and blocks of functionally related genes

Microarray technologies allow for data to be obtained on thousands of genes. Nevertheless, functional
genomics hypotheses on class comparison are still tested by artificially decomposing the problem into thou-
sands of independent problems, one for each gene, and by later exploring some functional links among
them. The tests are repeatedly applied to one gene at a time and ignore all the available knowledge about
their cooperative behaviour accumulated over the last years, stored in different repositories (e.g., GO, KEGG,
protein interaction databases). Since this strategy involves carrying out a large number of tests, severe cor-
rections must be imposed to reduce the number of false positives. Later, the genes selected by means of
these procedures are functionally analysed in a second step. It is evident that with this strategy a signifi-
cant amount of information is lost in both steps. Recently, however, different methods have been proposed
that take into account the properties of the genes and address different biological questions not in a gene-
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TABLE 2. DIFFERENT BIOLOGICAL TERMS FOUND AS SIGNIFICANTLY UP- AND DOWN-REGULATED

WHEN HEALTHY CONTROLS VERSUS DIABETIC CASES BY DISTINCT THRESHOLD-FREE METHODS

Healthy vs.
diabetic Pathway FatiScan GSEA PAGE Tian et al.

Up-regulated Oxidative Yes1,4 Yes3 Yes3 Yes3

phosphorylation1,3,4

ATP synthesis1 Yes NA NA NA
Ribosome1 Yes NA NA NA
Ubiquinone2 Yes NA NA NA
Ribosomal protein2 Yes NA NA NA
Ribonucleoprotein2 Yes NA NA NA
Mitochondrion2,4 Yes2,4 Yes3 Yes3 Yes3

Transit peptide2 Yes NA NA NA
Nucleotide Yes4 Yes3 Yes3 Yes3

biosynthesis3,4

NADH Yes NA NA NA
dehidrogense
(ubiquinone)
activity4

Nuclease activity4 Yes NA NA NA
Down-regulated Insulin signalling Yes NA NA NA

pathway1

Some of the terms refer to similar concepts and contain essentially the same genes, but are defined in different reposi-
tories (e.g., GO, KEGG).

Functional blocks constructed according to 1KEGG pathways; 2Swissprot keywords; 3Classes defined in GSEA; and
4GO terms.



centric manner but in a function-centric manner for class comparison (Al-Shahrour et al., 2005a; Goeman
et al., 2005, 2004; Kim and Volsky, 2005; Mootha et al., 2003; Subramanian et al., 2005; Tian et al., 2005),
class assignation (Lottaz and Spang, 2005) and class discovery (Huang and Pan, 2006; Jia and Xu, 2005;
Pan, 2006).

Last, but not least, algorithms are used if they are implemented in programmes. Given the number of
steps necessary for the proper analysis of a microarray experiment (normalisation, the analysis itself, and
the functional annotation), integrated packages are preferable in order to avoid problems derived from the
change of formats. Among the most complete packages available on the web is the GEPAS (Herrero et al.,
2003, 2004; Montaner et al., 2006; Vaquerizas et al., 2005) which offers different options for normalisa-
tion, supervised and unsupervised analysis (www.gepas.org) and is linked to the Babelomics suite (Al-
Shahrour et al., 2006, 2005b) for the functional annotation of genome-scale experiments (www.
babelomics.org), where different tests for two-steps of threshold-free functional annotation are implemented.

CONCLUSION

Ending up with a mere list of genes of interest is only half way to the result of a microarray experiment.
Apart from the utility that functional annotation can have as an external criterion to check the reliability of
the results of a microarray experiment -for example, in cluster quality assessment (Bolshakova et al., 2005)-,
it constitutes itself an unavoidable final step of any microarray analysis.

The aim of the methods for the functional interpretation of microarray experiments is to find a functional
explanation at molecular level that accounts for the macroscopic observation related to the hypothesis that
originated the experiment (e.g., why a number of genes are responsible for the physiological differences
between healthy and diseased people). This is achieved through the study of the over-representation of some
type of functionally relevant labels in the genes detected as important in the experiment. Two main ap-
proaches are currently in use: threshold-based and threshold-free. In the first case, the conclusions are
reached by means of a two-steps process where the important genes are firstly selected based upon their
experimental values (e.g., using a test for differential expression between two classes or a clustering method
for finding co-expressed genes, etc.) Then, this selection is analysed for the significant enrichment of bio-
logical terms with functional meaning (e.g. GO, KEGG) using different tests (Khatri and Draghici, 2005).
Several authors have pointed out that the first step of such strategy, where genes are selected without tak-
ing into account their cooperative behaviour, would constitute its Achile’s heel. If the genes are considered
as independent and tested one at a time, then very stringent thresholds need to be used to reduce the rate
of false positives (Al-Shahrour et al., 2005a; Mootha et al., 2003). The obvious consequence if this is the
reduction of the sensitivity in the second step. Threshold-free methods avoid this first step of selection by
not considering genes alone, but in functional blocks. These methods have proved to be much more sensi-
tive that the threshold-based alternatives (Al-Shahrour et al., 2005a; Mootha et al., 2003). Moreover, from
the point of view of the systems biology threshold-free methods are far more consistent because they di-
rectly test pre-defined functionally-related blocks of genes. These blocks are formed by genes that share
functional labels, which are supposed to account for the cooperative roles fulfilled by these genes in the
cell. Such functionally-related blocks of genes would provide a molecular-level explanation for the macro-
scopic traits studied in the microarray experiment.

The functional interpretation of microarray experiments can be considered an emerging conceptual area
in which a number of issues need still to be addressed. Two main aspects are susceptible of improvement:
the definition of blocks of functionally-related genes and the interpretation of data other than simple ranked
lists of genes. Blocks of functionally-related genes refer to biological meaningful terms that have been de-
fined by curators in different repositories (e.g., GO, KEGG) or can be defined by the users. These blocks
can be considered categorical variables in the sense that a gene belongs (or not) to a given class. Partial or
conditional membership are not considered. While this definition could be applicable to some functionally-
related classes, such as the “ribosomal proteins” which show a tight coordinated expression, in other classes
this level of coordination in the expression cannot be expected from all the members. Thus, the introduc-
tion of some weight that consider distinct degrees of membership or the use of different tests that account
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for non categorical classes would improve the resolution of the methods for functional interpretation of mi-
croarray experiments.

Not all the experimental outcomes in microarray data analysis can be represented as a list of ordered
genes. This representation is suitable for class comparison or for the study of a continuous parameter (e.g.,
the level of a metabolite) or survival studies, in which a threshold-free approach can be applied. Never-
theless there are situations in which this list does not have a so simple interpretation, as is the case of multi-
class comparison. Another interesting situation is when multiple variables are simultaneously studied. In
this case instead of a uni-dimensional list the resulting representation could be imagined as a multi-dimen-
sional space in which accumulation of biologically relevant terms must be studied. Also a network of tran-
scriptional interactions could be represented as a graph or as a matrix. In any case, the functional interpre-
tation by threshold-free strategies of these different gene arrangements is something that must be addressed
in the future. As previously mentioned, class discovery methods are also using systems biology inspired
strategies. Recently, biological information (Huang and Pan, 2006; Pan, 2006) or phenotypic information
(Jia and Xu, 2005) has been used as a constitutive part of clustering algorithms.

A systems biology approach to the analysis of microarray data in the future will tend to use more infor-
mation on the cooperative properties of the genes beyond their simple functional definition. Thus it is ex-
pected that a deeper knowledge on both the interactome and the transcriptional network of the genomes
will contribute to the formulation of more realistic biological questions using microarray experiments and
to obtain more complete and accurate answers.
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