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...the INB, National Institute of Bioinformatics 
(Functional Genomics Node) and the CIBERER 
Network of Centers for Rare Diseases, and…

...the Medical Genome Project (Sevilla)

Who we are
The Bioinformatics and Genomics Department at 

the Centro de Investigación Príncipe Felipe (CIPF), 
Valencia, Spain, and…



Some bibliographic data
Microarray publications

2010 Worlwide
Source Pubmed. Query:
2009[Entrez Date] AND 
country[Affiliation]AND 

microarray[Title/Abstract]

2010 Europe



Evolution of the papers published in 
microarray and next gen technologies

Source Pubmed. Query: "high-throughput sequencing"[Title/Abstract] OR 
"next generation sequencing"[Title/Abstract] OR "rna seq"[Title/Abstract]) 
AND year[Publication Date]
Projections 2011 based on January and February



Genomic data, the double challenge:
Data processing and interpretation

Raw image 
generation

Fasta files and 
QC files (or 
color space)
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Transcriptomics
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Technology driven Hypothesis driven

Read mapping and 
quantification

Intensity summary



Tools for gene expression 
analysis



Tools for functional profiling



Some numbers More than 150,000 
experiments analysed 
during the last year.

More than 1000 
experiments per day. 

451 papers cite GEPAS (215 are SOTA cites)

632 papers cite Babelomics (442 are  FatiGO cites)
(source ISI Web of Knowledge, May 2010)



Structure of the course
Theoretical 

Monday Tuesday Wednesday Thursday Friday
 

Transcript Assembly Statistical Reminder 
Differential expression for 

microarrays 
Gene-Set 

Methodologies 
Course Reception 

Course Overview 

Coffee break Coffee break Coffee break Coffee break Coffee break

Introduction to Linux 
Extracting RNAseq 

Counts in NGS Studies 
Microarray Data 
Normalization 

Predictors Biological Networks Introduction to NGS 
Technologies 

LUNCH LUNCH LUNCH LUNCH LUNCH

NGS Data Preprocessing 
Differential Expression in 

RNAseq Studies 
Genomic SNP data analysis Clustering Methods 

 

Closing

Coffee break Coffee break Coffee break Coffee break

 
NGS Read Mapping Functional annotation

Genome Wide Association 
Studies

Biological Databases 

Theoretical and 
Hands-on:



Background

The introduction and popularisation of high-throughput 
techniques has drastically changed the way in which 
biological problems can be addressed and hypotheses can 
be tested. 

But not necessarily the way in which we really address or 
test them…

The road of excess leads to 
the palace of wisdom 

(William Blake, 28 November 1757 – 12 
August 1827, poet, painter, and printmaker)



From genotype 
to phenotype. 

>protein kunase

acctgttgatggcgacagggactgtatgctg
atctatgctgatgcatgcatgctgactactga
tgtgggggctattgacttgatgtctatc....

…code for 
proteins...

…whose structure 
accounts for 
function...

Genes in the 
DNA...

…plus the 
environment...

…produces the final 
phenotype

Where do we come from?
The pre-genomics paradigm



From genotype 
to phenotype. 

>protein kunase

acctgttgatggcgacagggactgtatgctg
atctatgctgatgcatgcatgctgactactga
tgtgggggctattgacttgatgtctatc....

…code for 
proteins...

…whose structure 
accounts for 
function...

Genes in the 
DNA...

…plus the 
environment...

…produces the final 
phenotype

Reduccionistic approach to link causes (genome) 
to effects (phenotype) through actions (function)

Causes

Function

Effects



From genotype 
to phenotype. 

(in the post-genomics scenario)

…when they 
are expressed 
in the proper 
moment and 

place... …in cooperation 
with other 
proteins…

…conforming complex 
interaction networks...

Genes in 
the DNA...

…whose final 
effect 

configures 
the 

phenotype...

Each protein has an average 
of 8 interactions

Next Generation Sequencing
109bp per round

…code for 
proteins...

…that account for 
function if...

That undergo post-translational 
modifications, somatic 

recombination...
100K-500K proteins

…with its 
complex 

variability... 12 million SNPs in 
exonic regions



From genotype 
to phenotype. 

(in the functional post-
genomics scenario)

…when they 
are expressed 
in the proper 
moment and 

place... …in cooperation 
with other 
proteins…

…conforming complex 
interaction networks...

Genes in 
the DNA...

…whose final 
effect 

configures 
the 

phenotype...

Each protein has an average 
of 8 interactions

Next Generation Sequencing
109bp per round

…code for 
proteins...

…that account for 
function if...

That undergo post-translational 
modifications, somatic 

recombination...
100K-500K proteins

…with its 
complex 

variability...
Half a million of variants 

between pais of individuals

Causes

Function 
(modules of 

proteins)

Effects

Holistic approach. Causes and effects remain essentially 
the same. The concept of function has changed

All science is either 
physics or stamp 

collecting

Ernst Rutherford



From genotype 
to phenotype. 

(in the functional post-
genomics scenario)

…when they 
are expressed 
in the proper 
moment and 

place... …in cooperation 
with other 
proteins…

…conforming complex 
interaction networks...

Genes in 
the DNA...

…whose final 
effect 

configures 
the 

phenotype...

Each protein has an average 
of 8 interactions

Next Generation Sequencing
109bp per round

…code for 
proteins...

…that account for 
function if...

That undergo post-translational 
modifications, somatic 

recombination...
100K-500K proteins

…with its 
complex 

variability...
Half a million of variants 

between pais of individuals

Genotyping

Transcriptomics
Proteomics

Metabolomics

High-throughput data for 
functional genomics

Genome 
wide

Almost-
omics



Technologies for transcriptomics 
and genotyping and the 

corresponding bioinformatics 
support

User-friendly 
Babelomics

R and 
scripting

Microarray

NGS



Cy5 Cy3

cDNA arrays Oligonucleotide arrays

DNA expression microarrays. 
Strategies of hybridization

Competitive 
hybridization 
(two colors)

One color



The cost goes down, while the amount of data to manage 
and its complexity raise exponentially.

Next generation sequencing 
technologies are here

100,000

10,000

1,000

100

10

1

0.1

0.01

0.001

Million 
€

1990                  2001                   2007  2009      2012              

Moore’s 
Law

< 2 weeks

~1000€

First genome:
13 years

~3,000,000,000€



Relative throughput of 
the different 

technologies. NGS 
emerges with a potential 
of data production that 
will, eventually wipe out 

conventional HT 
technologies in the years 

coming

Observed and 
expected trend of 

publications in 
which NGS is being 

used. 

Next generation sequencing 
technologies are here



Some of the most common 
applications of NGS

RNA-seq
Transcriptomics:

Quantitative
Descriptive 
(alternative 

splicing)
miRNA

Resequencing:
Mutation calling

Profiling

De novo 
sequencing

Copy number 
variationChip-seq

Protein-DNA interactions
Active transcription 
factor binding sites

Metagenomics 
Metatranscriptomics



Gene expression profiling.
Historic perspective

Differences at phenotype level are the visible cause of differences at 
molecular level which, in many cases, can be detected by measuring the 
levels of gene expression. The same holds for different experiments, 
treatments, strains, etc.

•  Classification of phenotypes / experiments. Can we distinguish among 
classes (either known or unknown), values of variables, etc. using 
molecular gene expression data? (sensitivity) 

•  Selection of differentially expressed genes among the phenotypes / 
experiments. Did we select the relevant genes, all the relevant genes and 
nothing but the relevant genes? (specificity)

•  Biological roles the genes are carrying out in the cell. What general 
biological roles are really represented in the set of relevant genes? 
(interpretation)



Primary analysis

•Transform images corresponding 
to hybridization intensities 
(microarrays) or to read counts 
(NGS) into numbers 

•Convert all the measurements to 
a common scale that makes them 
comparable across experiments.



Secondary analysis

Once the measurements are in a 
common, comparable scale the 
results can be studied.

Different studies can be made that 
include class discovery, 
classification, gene selection, variant 
calling, etc.



Co-expressing genes... What do they 
have in 

common?

Different classes...

What genes are 
responsible for?

Molecular 
classification of 

samples

Studies must be hypothesis driven.

What is our aim? Class discovery? sample 
classification?  gene selection? ... 

Can we find groups 
of experiments with 
similar gene 
expression profiles?

Unsupervised 

Supervised



Co-expressing 
genes...

• What genes co-
express?
• How many different 
expression patterns 
do we have?
• What do they have 
in common?
• Etc.

Unsupervised problem: class discovery

Can we find groups of experiments 
with similar gene expression 
profiles?

Our interest is in discovering clusters of items (genes or 
experiments) which we do not know beforehand



Unsupervised clustering methods:
Method + distance: produce groups of 

items based on its global similarity

Non hierarchical hierarchical

K-means, PCA UPGMA

SOM SOTA

Different 
levels of 

information



An unsupervised problem: 
clustering of genes.

• Gene clusters are 
previously unknown

• Distance function

• Cluster gene 
expression patterns 
based uniquely on 
their similarities.

• Results are 
subjected to further 
interpretation (if 
possible)



Perou et al., PNAS 96 (1999)

Clustering of experiments:
The rationale 

Distinctive gene expression patterns in human 
mammary epithelial cells and breast cancers

Overview of the combined in vitro and breast tissue 
specimen cluster diagram. A scaled-down 

representation of the 1,247-gene cluster diagram 
The black bars show the positions of the clusters 

discussed in the text: (A) proliferation-associated, 
(B) IFNregulated, (C) B lymphocytes, and (D) 

stromal cells.

If enough genes have their 
expression levels altered in 
the different experiments, 
we might be able of finding 
these classes by comparing 
gene expression profiles.



Clustering of experiments:
The problems

Any gene (regardless its relevance 
for the classification) has the same 
weight in the comparison. 

If relevant genes are not in 
overwhelming majority we will find:

Noise

and/or 

 irrelevant trends



Supervised problems: Class prediction and gene 
selection, based on gene expression profiles 
Information on classes (defined on criteria external to the gene 

expression measurements) is used.

Problems: 

How can classes A, B, C... be 
distinguished based on the 
corresponding profiles of gene 
expression?

How a continuous phenotypic 
trait (resistance to drugs, 
survival, etc.) can be 
predicted? 

And 

Which genes among the 
thousands analysed are 
relevant for the classification?

Genes
(thousands)

Experimental conditions   
(from tens up to no more than a few houndreds)

A B C

Class 
prediction

Gene 
selection



Co-expressing genes... What do they 
have in 

common?

Different classes...

What genes are 
responsible for?

Molecular 
classification of 

samples

Studies must be hypothesis driven.

gene selection 
Can we find groups 
of experiments with 
similar gene 
expression profiles?



Gene selection.
The simplest way: univariant gene-by-gene. 
Other multivariant approaches can be used

•One class
Limma

•Two classes
T-test
Limma
Fold-change

• Multiclass
Anova
Limma

• Continuous variable 
(e.g. level of a 
metabolite)

Pearson
Spearmam
Regression

• Survival
Cox model 

• Time Course



Gene selection

being

The t-statistic 
was introduced 

in 1908 by 
William Sealy 

Gosset

cases                     controls

cases   controls

X2X1

SX2SX1

X2X1

SX2
SX1

Significantly 
different

Non significantly 
different



A simple problem: gene selection 
for class discrimination 

Genes differentially expressed 
among classes (t-test ), with p-
value < 0.05

~15,000 genes

Case(10)/control(10)



Sorry... the data was a collection of 
random numbers labelled for two classes

So... Why do we find good 
p-values? 

You were not interested a priori in 
the first (whatever), best 

discriminant, gene.

Adjusted p-values must be used!



On the problem of multiple testing

Take one coin, flip it 10 times. Got 10 heads? Use it for betting

= 10 heads. P=0.5   =0.00098... 10

:

1000 coins

10 heads !!!

P= 1-(1-0.5  )     =0.62

It is not the same getting 10 
heads with my coin than 
getting 10 heads in one 

among 1000 coins

10 1000

Will you still use this 
coin for betting? 



Co-expressing genes... What do they 
have in 

common?

Different classes...

What genes are 
responsible for?

Molecular 
classification of 

samples

Studies must be hypothesis driven.

sample classification

Can we find groups 
of experiments with 
similar gene 
expression profiles?



Of predictors and 
molecular signatures

What is a 
predictor?

Intuitive notion:A  B      X

Is X, A 
or B?

Most probably X belongs to class B

Diff (B, X) = 2     Diff (A, X) = 13

Algorithms: DLDA, KNN, SVM, random forests, 
PAM, etc.



Cross-validation
The efficiency of a 
classifier can be 
estimated through a 
process of cross-
validation.

Typical are three-
fold, ten-fold and 
leave-one-out 
(LOO), in case of 
few samples for the 
training



Predictor of clinical 
outcome in breast cancer

van’t Veer et al., 
Nature, 2002

Genes are arranged 
to their correlation 
eith the pronostic 
groups

Pronostic classifier 
with optimal 
accuracy



Genotyping



Genotyping to find mutations 
associated to diseases

  

Gene A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Gene B 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gene C 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
Gene D 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gene E 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

CasesControls

A

B C

D E

The simplest case: monogenic disease



The real life in GWAS
Our analysis of Hirschsprung´s disease 

54 trios of short-segment Hirschsprung´s disease Affy 6.0 (1million 
SNPs)

Conventional TDT test reports only 4 significant SNPs mapping only on one 
gene: RET, already knowk to be associated to the disease

This is not a matter of sample size: an example of GWAS in Breast Cancer. 

The CGEMS initiative. (Hunter  et al. Nat Genet 2007)

1145 cases 1142 controls. Affy 500K

Conventional association test reports only significant 4 SNPs mapping only on one 
gene: FGFR2 

Conclusions: conventional tests are not providing much resolution. 
What is the problem with them? Are there solutions?



Clear individual gene associations are 
difficult to find in multifactorial diseases 

The cases of the multifactorial disease will have 
different mutations (or combinations). Many cases 
have to be used to obtain significant associations to 

many markers. The only common element is the 
pathway (yet unknow) affected.

CasesControls



Functional profiling of genome-scale 
experiments in the post-genomic era 

How are 
structured?

Analysis

What is 
this gen?

Links

My data...

?

Functional profiling

What are 
these 
groups?

Cell cycle...

DBs Information

A B



Biological 
Databases

Genome 
Annotation

Functional 
Annotation

Structural 
Annotation

Gene Annotation

Gene Set Annotation

Gene 
Ontology

Biological Process 
Molecular Function 
Cellular Component

KEGG 
pathways

Biocarta 
pathways

Motifs

Domains

Gene 
Expression 

Modules

Keywords 
Swissprot

Reactome

Regulatory elements
miRNA

CisRed

Transcription Factor Binding Sites

Bioentities from 
literature

Protein-Protein 
interactions

Protein 
Structure

mSigDB



Two-steps functional 
interpretation

statistic

-

+

A

M
etaboli sm

T
ranspor t

...R
eproduc tion

test

A B

B

Metabolism
Transport
...
Reproduction

test

t-test

1

1

1
Genes are selected based on their 
experimental values and...

2 Enrichment in functional terms is 
tested (FatiGO, GoMiner, etc.)

2

2



Testing two GO terms 
(remember, we have to test thousands)

Cell cycle    60% Cell cycle      20%

Apoptosis    20% Apoptosis     20%

Group A Group B

Genes in group A have significantly to do with 
cell cycle, but not with apoptosis.

Are this two 
groups of genes 
carrying out 
different 
biological roles?

The popular Fisher’s test

A

B

Bi
os

yn
th

es
is

Oth
er

6
82
4



GO terms found in sets of 50 genes

 10.122953cell adhesionGO:0007155

0.6043280.00875837vitamin metabolismGO:0006766

10.0276032catabolismGO:0009056

0.4594170.0123062initiation of viral infectionGO:0019059

0.1813530.016503viral infectious cycleGO:0019058

10.129865metabolism GO:0008152

10.151987organismal physiological 
process

GO:0050874

10.116317deathGO:0016265

0.3000940.0157944homeostasisGO:0042592

10.0595683sulfur metabolismGO:0006790

Adjusted p-valuep-valueDefinitionGO

Each row corresponds to a random selection of 50 genes from the E. coli 
genome, compared with respect to the rest of the genome. 

GO terms in blue (p-value < 0.05 in individual test) have assymetrical 
distributions by chance (see adjusted p-values).



How to test significant differences in the distribution of 
biological tems between groups of genes?

FatiGO: GO-driven data analysis
Provides a statistical framework able to deal with multiple-testing hipothesis

Al-Shahrour et al., 2004 Bioinformatics (3rd most cited paper in computing sciences. Source: ISI Web of knowledge.)

Al-Shahrour et al., 2005 Bioinformatics. Al-Shahrour et al., 2005 NAR

Al-Shahrour et al., 2006 NAR. Al-Shahrour et al., 2007 BMC Bioinformatics

Al-Shahrour et al., 2007 NAR



PTL LBC

Martinez et al., Clinical Cancer 
Research. 10: 4971-4982.

Limphomas from mature 
lymphocytes (LB) and precursor    
 T-lymphocyte (PTL).

Genes differentially expressed, 
selected among the ~7000 genes 
in the CNIO oncochip

Genes differentially expressed 
among both groups were mainly 
related to immune response 
(activated in mature lymphocytes) 

Understanding why 
genes differ in their 
expression between 

two different 
conditions



Martinez et al., Human Genetics Laboratory. Molecular Pathology Programme, CNIO

Biological processes shown by the genes 
differentially expressed among PTL-LB

Obvious? NO

1) You now know that 
there are no other co-
variables (e.g. age, sex, 
etc)

2) If you do not have 
previously a strong 
biological hypothesis, 
now you have an 
explanation



Weaknesses of the two-steps, 
functional enrichment approach

B

17 with normal 
tolerance to 
glucose (NTG)

A

8 with impaired 
tolerance (IGT) 
+ 18 with type 
2 diabetes 
mellitus (DM2)

A B

(Mootha et al., 2003)

Low sensitivity of 
conventional gene 
selection methods 

Instability of molecular 
signatures. Variable selection 
with microarray data can lead to 
many solutions that are equally good 
from the point of view of prediction 
rates, but that share few common 
genes (Ein-Dor 2006 PNAS)

Platform comparison. There 
are still some concerns with the cross-
platform coherence of results. 
Paradoxically, despite the fact that 
gene-by-gene results are not always 
the same, the biological themes 
emerging from the different platforms 
are increasingly consistent  (Bammler 
2005 Nat Methods)



Functional enrichment approach 
reproduces pre-genomics paradigms

experiments

interpretation

test
no

pass

Context and cooperation between genes is ignored

experiments

test
interpretationtest

test
test
test
test
test
test
....

:
:



So, what is wrong with what 
we are doing?

We seek for the functions activated/deactivated in 
our experiment

To find them we firstly seek for genes 
activated/deactivated one at a time (independently)

Then we look among them for enrichment in 
functions (cooperative activities) using a second test 
that consider functions independent.

Therefore… is all wrong with this. 
The test we conduct is implicitly 
answering a question different to the 
one we want to ask. 



So, what is wrong with what 
we are doing?   (II)

This testing strategy is very strict in controlling:

Type I error (α): reject the null hypothesis when 
the null hypothesis is true, (false positive)

Type II error (β): fail to reject the null hypothesis 
when the null hypothesis is false (false negative)

But, we forget about

Type III error : get the right answer having asked 
the wrong question! 

The testing strategy we are conducting is implicitly 
answering a question different to the one we want 

to ask. 



Functional genomics.
Historic perspective and future

Differences at phenotype level are the visible cause of differences at 
molecular level which, in many cases, can be detected by measuring the 
levels of gene expression. The same holds for different experiments, 
treatments, strains, etc.

•  Classification of phenotypes / experiments. Sensitivity 

•  Selection of differentially expressed genes Specificity

•  Biological roles the genes are carrying out in the cell. Interpretation

•  Reformulating the questions. Are we asking the proper questions? 
What are the real bricks that account for the cellular behaviour and for 
the phenotype or the response to environmental stimuli?  The genes or 
other higher level units?



Cooperative activity of genes can be detected and 
related to a macroscopic observation

statistic

-

+

A B GO1 GO2 GO3 Ranking: A list of genes is ranked by 
their differential expression between two 
experimental conditions A and B  (using 
fold change, a t-test, etc.) 

Distribution of GO: Rows GO1, GO2 and 
GO3  represent the position of the genes 
belonging to three different GO terms 
across the ranking. 

The first GO term  is completely 
uncorrelated with the arrangement, while 
GOs  2 and 3 are clearly associated to 
high expression in the experimental 
conditions B and A, respectively. 

Note that genes can be multi-functional



A previous step of gene selection causes loss of 
information and makes the test insensitive

statistic

-

+

A B   GO1   GO2 

If a threshold based on 
the experimental values 
is applied, and the 
resulting selection of 
genes compared for 
over-abundance of a 
functional term, this 
migh not be found. 

t-test 
with two 

tails.

p<0.05

Significantly 
over-expressed 

in B

Significantly 
over-expressed 

in A

Classes expressed as 
blocks in A and B

Very few genes selected to 
arrive to a significant 

conclussion on GOs 1 and 2



GSA case study: functional differences 
in a class comparison experiment

B

17 with normal 
tolerance to 
glucose (NTG)

A

8 with impaired 
tolerance (IGT) 
+ 18 with type 
2 diabetes 
mellitus (DM2)

A B
No one single gene shows significant  differential 
expression upon the application of a t-test

(Mootha et al., 2003)

Healthy vs 
diabetic

Functional class GO KEGG

Up-regulated Oxidative phosphorylation X X
ATP synthesis X
Ribosome X
Mitochondrion X
Nucleotide biosynthesis X
NADH dehidrogenase 
(ubiquinone activity)

X

Nuclease activity X

Down-regulated Insulin signalling pathway X

Nevertheless, many pathways, and functional 
blocks are significantly activated/deactivated



Evaluation of the cooperative 
behaviour of a list of genes

Shortest pathways between all pairs of nodes in the list. 
The minimum connection network (MCN)

Nodes included in the list

Nodes not included in the list

MCN

Shortest pathways

Protein-protein interaction networks 

Prot 1

Prot 2

Pablo Mínguez Paniagua – TESIS DOCTORAL 19 de 36

List of selected 
proteins

Mapped 
onto the 

interactome



Gene-set-like network 
analysis

-----
-----
-----
-----
-----
-----
-----
-----
-----
-----
-----
-----
-----
-----

List of 
genes 

ranked by 
p-value, 

odd-ratio, 
etc.

X axis

Y axis

The list is traversed from 
higher to lower parameter 
values and the network 

properties are compared to 
their random expectations



Significant 
connections

nervous 
system 

development

enteric nervous 
system 

development 

cell 
morphogene

sis and 
migration 

neuron 
migration 

regulation of 
migration 

and 
proliferation 

focal 
adhesio

n

tight 
junction

regulation of 
cell 

migration

cell-
substrate 
junction 

assembly

signal 
transducer 

activity

intracellular 
signaling 
pathway

negative 
regulation of 

cell 
proliferation



What is next?
Functional classes have internal structure. 

Exploiting function and internal structure by 
modeling pathways

Method Gene-
based 

selection

Function-
based 

selection

Function Relationshi
ps among 

component
s

Functional 
enrichment

X X

Gene-set 
analysis

X X

Network 
enrichment

X X

Network 
enrichment 
analysis

X X

Pathway 
modeling

X X X



Example: 
Dysregulated gene 

expression networks in 
human acute 

myelogenous leukemia 
stem cells

Despite the pathway is 
not globally activated, 
two routes inside are 
actually activated, 
triggering Cell cycle 
functionality



Pipeline general of analysis

Raw image 
generation

Fasta files and 
QC files (or 
color space)

Resequencing  
and mapping

Variability survey

De novo 
sequencing

A
A
C
C
C
C

acggcgt
aggtcat
tgcattca
tactatca
tcacagg
cgggagt
tctatcag
tcgtatct
gatctata

aaat

acggcgt
aggtcat
tgcattca
tactatca
tcacagg
cgggagt
tctatcag
tcgtatct
gatctat
aaaat

acggcgt
aggtcat
tgcattca
tactatca
tcacagg
cgggagt
tctatcag
tcgtatct
gatctat
aaaat

Transcriptomics

S
C
I
E
N
C
E

Technology driven Hypothesis driven



SOCIAL:
MDA group in Linked-in

Babelomics group in Facebook



The Bioinformatics and Genomics Department 
at the Centro de Investigación Príncipe Felipe 

(CIPF), Valencia, Spain, and…
...the INB, National Institute of Bioinformatics 
(Functional Genomics Node) and the CIBERER 
Network of Centers for Rare Diseases, and…

...the Medical Genome Project (Sevilla)
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