Functional annotation with Blast2G0

Why Blast2GO?

What does Blast2GO do?

Generates annotations

Visualization of funcional annotations

What is functional annotation?

The function on the protein

ut frequently we nnotate nt sequences

Cellular Rol Expression Interactions

. . . .

Controlled Vocabulary

High throughput

Accessible

Functional Vocabularies

Molecular Function **Biological Process** Cellular Component

Metabolic pathways

Functional motifs

KEGG orthologues

The Gene Ontology

- ✓ Project developed by the Gene Ontology Consortium
- ✓ Provides a controlled vocabulary to describe gene and gene product attributes in any organism
- ✓ Includes both the development of the Ontology and the maintenance of a Database of annotations

The Ontology

- ✓ Annotations are given to te most specific (low) level.
- ✓ True path rule: annotation at a term implies annotation to all its parent terms
- ✓ Annotation is given with an Evidence Code:
 - o **IDA**: inferred by direct assay
 - o TAS: traceable author statement
 - o **ISS**: infered by sequence similarity
 - o **IEA**: electronic annotation

0

The GO has a DAG structure

The Gene Ontology Database (GOA)

http://www.geneontology.org/GO.current.annotations.shtml

- ✓ There is a collaborating institution per organism to provide annotations
- ✓ Most of the GOA annotations come from UniProt
- ✓ Most of the annotations are electronic annotations

Functional assignment

Automatic annotation

- ✓ GO annotations can be created by comparision to annotated sequences
- ✓ To achieve enough coverage, high-throughput, automatic annotation is required
- ✓ The most effective (also error prone) automatic annotation method is transfer from sequence similarity

Concerns in functional transfer by similarity

- ✓ Level of homology (~ from 40-60% is possible)
- ✓ The overlap query and hit sequences
- ✓ The domain or structure function association
- ✓ The paralog problem: genes with similar sequences might have different functional specifications
- ✓ The evidence for the original annotation
- ✓ Balance between quality and quantity: depends on the use

Blast2GO

- ✓ Suite for functional annotation and data mining on functional data
 - O Considerations for **annotation**
 - Simlarity
 - Length of the overlap
 - Percentage of hit sequence spanned by the overlap
 - Evidence original annotation
 - Blast hits and motif hits
 - Refinement by additional methods
 - O Visualization:
 - Annotation charts
 - Knowledge discovery on the DAG
- ✓ Desktop Java application
- ✓ web interface @ Babelomics: Babelomics for non-model

Blast2GO Annotation strategy

Blast2GO Annotation Strategy

Blast2GO annotation rule

Lowest term above threshold

Similarity requirement

$$sim = \frac{\sum positives_{hsp}}{\sum alignmentlength_{hsp}}$$

Quality of annotation source

	EC	weight	
ľ	IC	1	
	TAS	1	Щ
	IDA	1	≤.
	IMP	0.9	d
	IGI	0.9	videnc
	IPI	0.9	C
	ISS	8.0	O
	IEP	8.0	cod
	NAS	0.7	ď
	IEA	0.7	es
	ND	0.5	0,
	NR	0.5	
	RCA	0.5	

Lowest.node [(max.sim x ECw) + (#GO-1 x GOw) >= threshold]

Blast2GO annotation rule

Lowest.node [(max.sim x ECw) + (#GO-1 x GOw) >= threshold]

- When I have a GO with ECw = 1 and I do not allow abstraction (GOw = 0), then the Annotation Score = %similarity
- If the ECw < 1 my similarity requirement is higher to obtain the same Annotation Score
- If I allow abstraction GOw > 0, then with less similarity I can obtain the required Annotation Score at a parent node

Let consider Sequence Query A with the following Blast result:

Hit sequence	% similarity	#GO terms	Evidence Code	
1	60%	GO1	IDA	
2	65%	GO2	ISS	
3	67 %	GO3	IEA	
GO2 and GO3 are brother terms with parent term GO4				
AS = %sim * ECw + (#GO-1) * GOw				

Which GO annotations will be transferred?

Hit sequence	% similarity	#GO terms	Evidence Code
1	60 %	G01	IDA
2	65 %	GO2	ISS
3	75%	GO3	IEA

GO2 and **GO3** are brother terms with parent term GO4

AS = %sim * ECw + (#GO-1) * GOw

- o ECw (IDA)=1; ECw(ISS) = 0.8; ECw(IEA) = 0.6 (Evidence Code Control)
- Annotation threshold is set to 55
- O GOw = 0 (no contribution from children terms)

```
AS(GO1) = (60 * 1) + (1-1*0) = 60 > 55 --> GO1 is transfered to the query sequence AS(GO2) = (65*0.8) + (1-1*0) = 52 < 55 --> GO2 is NOT transfered AS(GO3) = (67*0.7) + (1-1*0) = 47 < 55 --> GO3 is NOT transfered AS(GO4) = (67*0.7) + (2-1*0) = 47 < 55 --> GO4 is NOT transfered
```

Hit sequence	% similarity	#GO terms	Evidence Code
1	60 %	GO1	IDA
2	65 %	GO2	ISS
3	67 %	GO3	IEA

GO2 and **GO3** are brother terms with parent term GO4

AS = %sim * ECw + (#GO-1) * GOw

- o ECw (IDA)=1; ECw(ISS) = 0.8; ECw(IEA) = 0.7 (Evidence Code Control)
- O Annotation threshold is set to 55
- O GOW = 10 (the children contribution is enabled)

```
AS(GO1) = (60 * 1) + (1-1 * 10) = 60 > 55 --> GO1 is transfered to the query sequence AS(GO2) = (65 * 0.8) + (1-1 * 10) = 52 < 55 --> GO2 is NOT transfered AS(GO3) = (67 * 0.7) + (1-1 * 10) = 47 < 55 --> GO3 is NOT transfered AS(GO4) = (67 * 0.7) + (2-1 * 10) = 57 > 55 --> GO4 is transfered
```

Hit sequence	% similarity	#GO terms	Evidence Code
1	60 %	GO1	IDA
2	65 %	GO2	ISS
3	67 %	GO3	IEA

GO2 and GO3 are brother terms with parent term GO4

AS = %sim * ECw + (#GO-1) * GOw

- o ECw (IDA)=1; ECw(ISS) = 0.8; ECw(IEA) = 0.7 (Evidence Code control)
- O Annotation threshold is set to 50
- o **GOw** = **10** (the children contribution is enabled)

```
AS(GO1) = (60 * 1) + (1-1 * 10) = 60 > 50 --> GO1 is transfered to the query sequence AS(GO2) = (65 * 0.8) + (1-1 * 10) = 52 > 50 --> GO2 is transfered to the query sequence AS(GO3) = (67 * 0.7) + (1-1 * 10) = 47 < 50 --> GO3 is NOT transfered (transferred child)
```

Hit sequence	% similarity	#GO terms	Evidence Code
--------------	--------------	-----------	---------------

1	60%	GO1	IDA
2	65%	GO2	ISS
3	67%	GO3	IEA

GO2 and GO3 are brother terms with parent term GO4

$$AS = \%sim * ECw + (\#GO-1) * GOw$$

- 0 ECw (IDA)=1; ECw(ISS) = 1; ECw(IEA) = 1 (no Evidence Code control)
- o Annotation threshold is set to 55
- o **GOw = 10** (the childern contribution is enabeled)

$$AS(GO1) = (60 * 1) + (1-1 * 10) = 60 > 55 --> GO1$$
 is transfered to the query sequence

$$AS(GO2) = (65 * 1) + (1-1 * 10) = 65 > 55 --> GO2$$
 is transfered

$$AS(GO3) = (67 * 1) + (1-1 * 10) = 67 > 55 --> GO3$$
 is transfered

$$AS(GO4) = (67 * 1) + (2-1 * 10) = 77 > 55 --> GO4 is NOT transferred (transferred child)$$

B2G Highlighting on the DAG

- The B2G Score
 Coloring strategy to highlight regions in the DAG where the most interesting information is concentrated
- ✓ The confluence score (B2G score) keeps a balance between the number of annotated sequences at one node and the distance to the origin of annotation

Hands-on