BABELOMICS

Microarray Data Analysis Functional Enrichment: FatiGO

Martina Marbà

mmarba@cipf.es

Valencia, June 2010

Bioinformatics and Genomics Department Centro de Investigacion Principe Felipe (CIPF) (Valencia, Spain)

Data analysis workflow

Diff.expression **Functional Upload Processing** Clustering **Analysis Predictors**

Fatigo Schema

FatiGO is a web tool for: statistical test, multiple test corrections, filtering ...

Two lists of genes or ids, ie: differentially expressed genes, ...

Integrated Biological DB of Functional Annotation

(GO, GOSlimGOA, InterPro, KEGG, Reactome, Biocarta, MiRNA targets, Jaspar TFBS, ORegAnno)

FatiGO

Questions that Functional enrichment analysis try to answer

- Is there any significant functional enrichment in my gene list?
- Are these genes involved in same pathways?
- Are they sharing a specific microRNA regulation?
- Are they involved in the same disease?

FatiGO

 A web-based tool for the functional profiling of genome-scale experiments

FatiGO features

- It allows us to compare functional annotation of:
 - Two list of genes
 - One list against the rest of genome
 - Lists of genes with user submitted annotations
- One statistical test for each Functional Block of annotation
 - Fisher's exact test
 - Multiple testing context (hundreds of annotation)
 - Filtering of annotation is convenient (the less tests the best correction)

FatiGO features

- It allows us to compare functional annotation of:
 - Two list of genes
 - One list against the rest of genome
 - Lists of genes with user submitted annotations
- One statistical test for each Functional Block of annotation
 - Fisher's exact test
 - Multiple testing context (hundreds of annotation)
 - Filtering of annotation is convenient (the less tests the best correction)

FatiGO test

One Gene List (A)

groups of genes carrying out different biological roles?

Are this two

The other list (B)

Biosynthesis 60% ●

Sporulation 20%

Biosynthesis 20% ●

Sporulation 20% ●

Genes in group A have significantly to do with biosynthesis, but not with sporulation.

	Α	В
Biosynthesis	6	2
No biosynthesis	4	8

We do this for each term (GO, miRNA, Interpro, ...)!!!

Do you want to compare 2 conditions or one vs the rest of genome?

eg. Compare 2tissues or responder genes vs. non-responders

eg: genes that respond to one treatment against the genome

Data

selection

Upload first at Data Upload

"txt" file with gene lists:

gene1 gene2 gene3

...

HINT:

- · Two tailed for 2 lists
- One tailed for 1list vs rest of genome (or your annotations)

Algorithm options

Removing duplicates:

 Choose one or other option depends on from where gene lists come from.

Which type of

functional

information?

Which type of functional information?

B.

Which type of functional information?

Your annotations: useful when you work with your own annotations OR with an organism that is not in Babelomics

Upload first at Data Upload

Example (your annotations):

38969_at GO:0003677 37639_at GO:0006306 37149_s_at GO:0004674 37149_s_at GO:0005525 37639_at GO:0006306 37149_s_at GO:0004674 ...

What's your job name?

ob	
job name:	-
job description:	

Set up a job name and optionally, give a description.

FatiGO

Running an example ...

FatiGO

Example:

Description

Molecular Apocrine Breast Cancer dataset:

- 49 Affymetrix (HG-U133A), 14,500 genes
- Human
- 3 tumor classes: apocrine, basal and luminal.

FatiGO input

- 1) Run *differential expression* (using ANOVA test) because we are comparing 3conditions
- 2) Send results to FatiGO:

• 3) Input FatiGO form:

- Comparison: list vs rest of genome

- <u>Test</u>: one tailed test

FatiGO results

Summary results:

Id annotations per DB:

DB	List1	Genome		
GO biological process (levels from 3 to 9)	350 of 500 (70%) 11.26 annotations/id	11716 of 23198 (2343.2%) 5.08 annotations/id		
GO molecular function (levels from 3 to 9)	344 of 500 (68.8%) 3.05 annotations/id	11370 of 23198 (2274%) 1.92 annotations/id		

Tables significant terms:

V Significant Results

Number of significant terms per DB :

DB	Number of significant terms
GO biological process (levels from 3 to 9)	142
GO molecular function (levels from 3 to 9)	30

FatiGO results

Significant results:

Term	Term size	Term size (in genome)	Term annotation % per list	Annotated ids	Odds ratio (log e)	pvalue	Adjusted pvalue
negative regulation of apoptosis (GO:0043066)	412	403	list 1: 7.2% list 2: 1.62%	list 1: 205225_at,20979 list 2: ENSG00000001084,ENSG	1.5495	7.006e-13	7.65e-10
negative regulation of programmed cell death (GO:0043069)	418	409	list 1: 7.2% list 2: 1.65%	list 1: 205225_at,20979 list 2: ENSG00000001084,ENSG	1.5334	1.074e-12	7.65e-10
cellular amino acid derivative metabolic process (GO:0006575)	182	173	list 1: 4.8% list 2: 0.68%	list 1: 209604_s_at,209 list 2: ENSG00000001084,ENSG	1.995	9.24e-13	7.65e-10
cellular amino acid and derivative metabolic process (GO:0006519)	447	447	list 1: 7.4% list 2: 1.77%	list 1: 209604_s_at,209 list 2: ENSG00000001084,ENSG	1.491	1.7e-12	9.082e-10

FatiGO results

Graphical results:

More results:

- V Other actions
 - Open input form
 - Change p value
 - 0.1 0.05 0.01
- 0.005

FatiGO Exercises

- Go to the tutorial: http://bioinfo.cipf.es/babelomicstutorial/enrichment_analysis
- Run worked examples
- Repeat examples modifying parameters
- Run FatiGO exercise (from the tutorial)